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Abstract— In this work we present an obstacle detection and
tracking solution applied to Automated Guided Vehicles
(AGYVs) in industrial environments. The proposed method relies
on information provided by an omnidirectional stereo vision
system enabling 360 degree perception around the AGV. The
stereo data is transformed into a classified digital elevation map
(DEM). Based on this intermediate representation we are able
to generate a set of obstacle hypotheses, each represented by a
3D cuboid and a free-form polygonal model. The cuboidal
model is used for the classification of each hypothesis as
“Pedestrian”, “AGV”, “Large Obstacle” or ‘“Small Obstacle”,
while the free-form polylines are used for object motion
estimation relying on an Iterative Closest Point (ICP) method.
The obtained measurements are subjected to a Kalman filter
based tracking approach, in which the data association takes
into account also the classification results.

I. INTRODUCTION

Today’s modern factories deal with two main type of
activities: product processing and logistic operations.
Logistic operations include the transportation of products or
raw materials to production lines, storage areas or shipment
points. Despite the fact that the automation of product
processing reached a high level of efficiency, logistic
management is still marginal. Automated logistic operations
can be carried out using a fleet of Automated Guided
Vehicles (AGVs) and such solutions have been already
described and analyzed in [2-4]. An evaluation of AGVs
with different degrees of autonomy is provided in [5].
Considering the high number of AGVs working in a
dynamical industrial environment, traffic management
becomes a key aspect. Centralized and decentralized control
strategies, such as [6-8], can be wused for optimal
coordination of AGVs.

The main purposes of AGVs are to offer a time efficient,
cost effective, safe, green and less error-prone solution for
factory logistic management. Using autonomous load
handling systems forklift AGVs are able to work with
various types of goods. For safe autonomous navigation and
interaction with a dynamic environment, AGVs need to
perceive the surroundings as well as to detect and track
relevant obstacles such as other AGVs or pedestrians. Laser
scanners are the most common perception sensors for AGVs.
They offer a 2D perception of AGVs surroundings and can
be used for navigation and obstacle avoidance [9-11]. If an
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Figure 1. Automated warehouse environment

AGV detects an obstacle in the moving direction, it can
apply automated braking or an avoidance maneuver.

Visual perception is an alternative to laser scanner based
perception for mobile robots. It can be used in a similar
manner for autonomous navigation and obstacle avoidance
[12]. Vision based perception is a common solution in the
automotive industry for advanced driving assistance systems
or autonomous driving in traffic environments. The
monocular or stereo cameras are mounted behind the
windshield and the field of view is only in the driving
direction. A review on vision based detection, tracking and
behavior analysis approaches is provided in [13]. In the case
of mobile robots there is higher interest in the perception of
the surrounding environment in all directions. The use of
omnidirectional cameras can allow a 360 degree visual
perception and have been used for navigation on mobile
robots on ground [14], [15] and also on micro-aerial vehicles
[16]. Using a pair of omnidirectional cameras it is possible to
achieve omnidirectional stereo vision that allows depth
computation and a more complex 3D perception of the
surrounding environment [17], [18].

Besides the surrounding world perception, an AGV
system should be able to detect and also track the state of all
relevant obstacles in real time and with high confidence. The
motion information of obstacles allows better understanding
of a dynamic environment and a more efficient risk
assessment. The tracking results can be used as additional
information for collision avoidance and path planning.

Usually, object tracking can be decomposed into three
main steps: measurement extraction, data association and
object state estimation. Various solutions have been
proposed in literature. Some of them rely on directly tracking
3D depth data [19], [20] while other approaches try to
transform the high volume of information into intermediate



representations such as occupancy grids [21], [22], octree-
based data structures [23], [26] or digital elevation maps
[24], [25]. For example, in [26] the data provided by a lidar
sensor is mapped using octree-based representations. The
moving objects are detected from inconsistencies between
different scans. In [25] a particle filter-based solution is used
to track position and speed of each cell in a dynamic
elevation map.

In order to reduce the processing time, various
approaches rely on extracting and tracking high-level
geometric models such as 2D or 3D bounding boxes [29],
contours [27] or free-form polygons [28].

Although the use of more compact representations can
provide better processing costs, sometimes it is not enough
to achieve a robust tracking mechanism. As a solution, some
approaches try to combine the geometric properties with
color information [30], while other methods apply additional
vision-based recognition steps in order to increase the
robustness of the data association and object tracking [31],
[32].

In this work we propose a solution for detecting and
tracking obstacles in industrial environments for AGVs. In
order to cover the entire surrounding of the AGV, we use an
omnidirectional stereo vision based perception system. The
employed fisheye cameras enable a 360 degree perception of
the AGV’s environment. The stereo data is transformed into
a more compact and more practical representation mode in
the form of a classified digital elevation map (DEM). The
DEM is used to generate obstacle hypotheses, each
represented as a cuboidal and a free form polygonal model.
The cuboidal model is used for the classification of each
hypothesis as “Pedestrian”, “AGV”, “Large Obstacle” or
“Small Obstacle”, while the free form polygonal model is
used for estimating the object motion based on an Iterative
Closest Point (ICP) approach. The obtained measurements
are subjected to a Kalman filter based tracking solution, in
which the data association takes into account also the
classification results.

The proposed solution was developed in the framework
of the PAN-Robots FP7 EU project [1] for obstacle
detection, classification and tracking by AGVs in a
warehouse environment.
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Figure 2. System Overview

II. ENVIRONMENT PERCEPTION AND INTERMEDIATE
REPRESENTATION

In order to detect and track the obstacles around the
AGV, first the surrounding environment has to be perceived,
then it has to be represented. We employ the omnidirectional
stereo vision system proposed in our previous work [18].
Two fisheye cameras [38] are used to obtain a 360 degree
stereo perception around the AGV. The cameras are
mounted on a rigid rig at a height of 4.5 meters over the
AGYV and are oriented downwards as illustrated in Fig. 3a.
The image stability to vibrations and oscillations is ensured
by the fact that the ground in a warehouse is flat, the AGV
speed is low (about 3m/s), while the frame rate is 20 fps.

The fisheye image pairs (Fig. 3b) are decomposed into 3
rectified image pairs using the proposed multi-channel
rectification approach [18]. The GPU accelerated stereo
matching algorithm proposed in [40] is used to achieve 360
degree depth perception. The reconstructed 3D points are
used to detect the ground plane and to build a digital
elevation map (DEM), consisting of a 2D grid of cells with
estimated heights. The size of a single cell is of 10x10cm
and each cell is classified as “ground” or “obstacle” [18],

(b) ©
Figure 3. (a) The omnidirectional stereo vision system. (b) Left and right fisheye images. (c) The classified digital elevation map (3D View) obtained
from stereo fisheye images.



[39]. The classified DEM (see Fig. 3c) is used as a
representation form for the surrounding 3D environment for
further processing.

III. OBSTACLE DETECTION

The obstacle detection module consists in extracting a set
of object hypotheses. First, the DEM cells are clustered into
connected entities, called blobs. Then, for each individual
blob, we extract a 3D bounding box and a free-form
polygonal representation. Thus, each object hypotheses is
defined by two separate models. The 3D cuboids are used to
select the regions of interests for obstacle classification,
while the polygonal models are used to extract the object
motion by applying a fast Iterative Closest Point (ICP)
alignment solution. The motivation of using polylines instead
of more simplistic 3D boxes for the obstacle tracking comes
from the need to improve the motion estimation accuracy.
Thus, the ICP-based matching process relies on a set of free-
form models that are able to approximate the real obstacle
shape with a number of points as small as possible.

A. Extracting 3D Bounding Boxes

In order to compute the object blobs, the DEM cells are
clustered based on a proximity criterion. The connected sets
which contain a number of cells smaller than a given
threshold are considered noise and are filtered. For each
individual set of grouped DEM cells, a 3D oriented box is
computed (see Fig. 4, top). The resulted cuboid model is
described by its center of mass P (Xc,Yc,Zc), width W,

length L, height H and an orientation @ in the horizontal
plane.

B. Extracting Free-From Polygonal Models

In addition to the cuboidal model, for each object
candidate we compute a free-form polygonal representation
(see Fig. 4, bottom). As the resulted polylines are able to
better approximate the real shape of the obstacle, we use
these models to determine the object motion by applying an
ICP-based matching solution. For extracting the object
delimiters, we use the Border Scanner algorithm, previously
introduced in [33]. The basic idea of this approach is to
collect the most visible obstacle points along virtual rays
which extend from the origin position in the radial
directions. Subsequently, the resulted contours are
transformed into polylines. In order to avoid overlapping
sub-problems (the cases when the same grid cell is traversed
more than once) and to minimize the processing cost, an
improved Border Scanner solution was proposed in [34].
Instead of re-computing the scanning axes at each frame, a
predefined path structure is used to direct the searching
process through the DEM space. This predefined map is
called Policy Tree and is generated only once, in the
initialization step. Thus, for accumulating the closest
obstacle cells, a depth first search strategy is used. Compared
to the previous Border Scanner variants, used in the context
of driving assistance applications, the proposed solution
includes two main differences. First, the obstacle delimiters
are extracted by exploring the DEM grid corresponding to
the entire area around the AGV. Second, unlike the previous

Figure 4. Obstacle representation (a region of interest). Top: oriented 3D
cuboids. Bottom: free-form polylines.
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Figure 5. Extracting obstacle delimiters - an illustrative example. (a) The
classified DEM (top view). The object cells are shown with red. The
ground plane cells are highlighted with blue. (b) The DEM cells are
grouped into individual clusters (blobs). The example illustrates how the
delimiter points Px and P, are selected along a virtual ray. (c) The two
contour points are accumulated into separate lists. (d) A part from the
fisheye image corresponding to the selected Region of Interest (ROI) in
(a). (e) The extracted obstacle delimiters by using the classical Border
Scanner approach. (f) The Multiple Depth Border Scanner (current
solution). It can be observed that the proposed solution is able to extract
more complete object shapes, including the occluded parts.



implementations which consisted in extracting only the first
visible obstacle points (one point per ray), current solution
extracts the intersection points with other obstacles situated
at different depths along the same ray (one point per
obstacle). In other words, for each scanning axis and for each
object intersecting that axis we collect its closest (not
occluded) point (see Fig. 5).

IV. OBSTACLE CLASSIFICATION

For a better understanding of obstacles we classify them
using visual codebook based image descriptors as:
pedestrian, AGV or other obstacle. The 3D information is
taken into consideration for limiting the minimum and
maximum size of the obstacle candidates for each class (50%
below minimum and 50% above maximum size).

To obtain the classification features for an obstacle, first,
the 3D bounding box is projected into the left fisheye
intensity frame and is cropped out as a rectangular image.
Due to the nature of the fisheye lens, the image is radially
symmetrical. Therefore, each obstacle image is rotated
according to the polar angle of the obstacle’s position in the
fisheye image, by considering the fisheye image center as the
origin for the polar reference system. Rotation is done
relatively to the 90 degrees polar angle. The relationship
between obstacle orientation and polar angle can be seen in
Fig. 6. To achieve scale invariance, the image is resized to
have a fixed width of 100 pixels, if the width is greater than
the height. Otherwise it is resized to have a fixed height of
100 pixels.

Dense HOG descriptors are computed over the 2D
obstacle image. A 24 dimensional descriptor vector is
obtained at each pixel position. The descriptor vectors are
discretized using a visual codebook (or dictionary)
consisting of 100 visual words. After discretization each
pixel position is represented by one of the hundred visual
words and the image can be described by the distribution of
words. Implementation details regarding descriptor
computation and codebook training can be found in our work
on pedestrian detection [41]. 21 image regions are
considered by applying the following partitionings: 1x1, 2x2
and 4x4 (3 level spatial pyramid [42]). By computing the
histogram of visual words for the 21 regions, we obtain 2100
individual classification features.

We train two binary Ada-boost [43] classifiers for

Figure 6. Ostacle classification: AGV — red; Pedestrian — green; Other
Large — light blue; Other Small — dark blue.

pedestrians and AGVs. 2048 boosting rounds are used to
train an ensemble of two-level decision trees learned over the
2100 classification features. The inverse of the boosting
decision function value is used as probability estimate. If an
obstacle is classified as pedestrian and also as AGV (for
example when both are visible in the obstacle image) then
we consider the class with the higher probability. If an
obstacle is neither classified as pedestrian nor as AGV, then
it is labeled as other small obstacle if it has a height of less
than 50 cm, or other large obstacle otherwise.

V. OBSTACLE TRACKING

The object tracking module is aiming to estimate,
recursively in time, the state of the detected obstacles around
the AGV given all measurements up to the current time t.
The object tracking solution is based on a Kalman filtering
mechanism used for each individual detected target. In our
case, the obstacle state X,,ata time ¢, is defined by the

following variables:
X, =Ix,z,,vx,,vz,,W,,L . H,] 1)

where x, and z, represent the object position, vx and vz,

are the object speed components and W;, L, and H, describe
the object width, length and height properties.

We consider that the coordinate system of the vision
based perception module is situated in front of the AGV
vehicle, with the X axis pointing to the right and Z axis
pointing towards the AGV direction. The overall obstacle
tracking solution can be described by the steps that follow
below.

A. AGV Motion Compensation

Before estimating the dynamic properties of other
obstacles, we should also take into consideration the AGV’s
motion. The PAN-Robots AGV localization parameters are
provided by a dedicated self-localization system [35] that is
able to estimate the AGV’s position in the warehouse with an
accuracy of lcm. At each frame, the localization module

provides the AGV’s orientation ¢ AGY its coordinates in the

warehouse reference system, and a timestamp. Following a
circular motion model, a point from the previous coordinate
system is transformed into the current coordinate system
according to:
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where, [thA,tzCA]T represents the distance between the

camera and the origin of the AGV reference system, and
[£X oy - 1240y 17 18 the AGV translation vector between the

previous and current frames in the warehouse coordinate
system.



B. State Prediction

Before incorporating the new measurements, the state of
each track is predicted from the previous information X, |

according to its state transition probability p(X, | X, |)- By

considering that the tracked obstacles are described by a
linear motion model, the state parameters are predicted from
its previous state compensated with the AGV’s motion

X, :[xt*—l’zt*—l’vx,r—l’v W, L HH]T according to:

zt=1> " =10 -1
X, =AX, +w (3)

Equation (3) defines the motion model described by a state
transition matrix A and a random noise, which is drawn from
a zero mean Gaussian distribution w ~ N(0,Q) with

covariance Q. The covariance Q is adjusted by considering a
maximum allowed obstacle acceleration.

C. Data Association

The data association consists in assigning the new
extracted objects to the predicted targets. First we compute a
distance based association metric by counting all point-to-
point correspondences between the newly extracted object
delimiters and the nearest tracks. First, each contour of a
tracked object from the previous frame is projected into the
current frame coordinate system according to the object’s
dynamic parameters and the AGV motion. Then, for each
predicted contour point the closest measurement point is
selected as the association candidate. In order to optimize
this point-to-point selection phase, the closest associated
points are determined in O(l) by using pre-computed
distance transforms as a look-up table, in which each cell
stores the position of the closest contour point. The data
association is performed in two directions: from
measurements to targets and from targets to measurements.
In order to avoid the ambiguous association cases, when the
same observation may belong to multiple tracks or vice
versa, we also take into account the object types provided by
the classification module.

D. Computing the Object Motion

For extracting the obstacle motion we use an Iterative
Closest Point-based solution [36] previously applied by us in
a driving assistance application [37]. The ICP technique is
used to compute the optimal transformation between the
tracks and the associated observations by minimizing the
alignment  error. Having the set of  points
Syuge P 1i=1..N,,,,,} that describe the tracked object

contour and the set of points § _{p7“|j=1.N

describing the extracted contour, the optimal rotation R and
translation 7 are computed by iteratively minimizing the
following objective function:

meas }

er(RT) =~ Y[Rl T pp
im1

where N is the number of point-to-point correspondences

(p, ", pl““)that are determined by selecting for each

target

point p;
corresponding point p

S

transformations represent the difference between the
predicted state variables and the current observation, the
measured object speed can be calculated as the sum of the
newly extracted motion components and the predicted speed
parameters (the initial guess).

S the closest

in the target contour
target

meas

L in the newly observed contour

Since the estimated track-to-measurement

meas *

E. Object State Update
Having a measurement vector defined by the computed
speed components and the extracted cuboid position and
size, the new object state and its covariance are updated by
using the standard Kalman filter equations.

VI. EXPERIMENTAL RESULTS

The proposed system was tested in various industrial
warehouse environments including static and dynamic
obstacles of different types. For the experiments we used a
GPU equipped industrial PC that was installed on a PAN-
Robots AGV [1]. The whole perception system runs in real-
time at 10 frames/second.

Fig. 7 presents a scenario with moving pedestrians around
the AGV. Each object is represented by a cuboid model with
a velocity vector (red color). Fig. 8 illustrates how the
obstacles are tracked in time. Each individual obstacle is

(a) (b)

Figure 8. Obstacle Tracking. (a) The detected objects are illustrated with
different colors. (b) The trajectories generated by each tracked object (top
view).



TABLE I

TRACKING EVALUATION
Detection rate 94.3 %
Tracking rate 92.8 %
Number of miss-associations 31 (during 2165 frames)
Mean localization error 0.157 m
Mean velocity error 0.48 m/s

represented by a unique ID (a different color). Fig. 8b shows
the generated trajectories by the tracked objects. A short
video presenting the results can be accessed at [44].

For quantitative results we used a test scenario including
static and dynamic obstacles. In order to generate ground
truth data we tracked and annotated manually 16 obstacles
for 2165 frames. The ground truth targets were in the
perception range for a number of frames varying between 50
and 900. Table I. provides an overview of the computed
performance metrics for tracking evaluation. During the
2165 frames there were 31 miss-associations, i.e. the
tracking ID of an obstacle has been changed, mostly due to
difficult occlusion cases. The ground truth obstacles were
detected for 94.3% of the time and were correctly tracked for
92.8% of the time. The average localization error was of
0.157 m, while the average velocity error was of 0.48 m/s.

VII. CONCLUSION

The main purpose of this work was to provide a robust
perception solution for AGVs in order to detect and track
obstacles in dynamic industrial environments. We proposed
a system that uses omnidirectional stereo cameras for 360
degree surround perception. The classified digital elevation
map, resulting from the stereo data, is used to generate
obstacle hypotheses. The obstacle tracking solution relies on
two representations: a 3D cuboid used for obstacle
classification and a free-form polygonal model used for its
motion estimation.

The proposed solution was implemented and tested on
AGYVs in an industrial warehouse environment. The obtained
experimental results are promising, however the maintaining
of tracking for temporarily occluded obstacles is still a
challenge and its further research will be of interest in the
future. Also, the accuracy and stability can be improved by
removing static obstacles like walls or by incorporating the
intensity information in the data association stage.
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