
  

 
 

Figure 1. Automated warehouse environment 

  

Abstract— In this work we present an obstacle detection and 

tracking solution applied to Automated Guided Vehicles 

(AGVs) in industrial environments. The proposed method relies 

on information provided by an omnidirectional stereo vision 

system enabling 360 degree perception around the AGV. The 

stereo data is transformed into a classified digital elevation map 

(DEM). Based on this intermediate representation we are able 

to generate a set of obstacle hypotheses, each represented by a 

3D cuboid and a free-form polygonal model. The cuboidal 

model is used for the classification of each hypothesis as 

“Pedestrian”, “AGV”, “Large Obstacle” or “Small Obstacle”, 

while the free-form polylines are used for object motion 

estimation relying on an Iterative Closest Point (ICP) method. 

The obtained measurements are subjected to a Kalman filter 

based tracking approach, in which the data association takes 

into account also the classification results. 

I. INTRODUCTION 

Today’s modern factories deal with two main type of 
activities: product processing and logistic operations. 
Logistic operations include the transportation of products or 
raw materials to production lines, storage areas or shipment 
points. Despite the fact that the automation of product 
processing reached a high level of efficiency, logistic 
management is still marginal. Automated logistic operations 
can be carried out using a fleet of Automated Guided 
Vehicles (AGVs) and such solutions have been already 
described and analyzed in [2-4]. An evaluation of AGVs 
with different degrees of autonomy is provided in [5]. 
Considering the high number of AGVs working in a 
dynamical industrial environment, traffic management 
becomes a key aspect. Centralized and decentralized control 
strategies, such as [6-8], can be used for optimal 
coordination of AGVs. 

The main purposes of AGVs are to offer a time efficient, 
cost effective, safe, green and less error-prone solution for 
factory logistic management. Using autonomous load 
handling systems forklift AGVs are able to work with 
various types of goods. For safe autonomous navigation and 
interaction with a dynamic environment, AGVs need to 
perceive the surroundings as well as to detect and track 
relevant obstacles such as other AGVs or pedestrians. Laser 
scanners are the most common perception sensors for AGVs. 
They offer a 2D perception of AGVs surroundings and can 
be used for navigation and obstacle avoidance [9-11]. If an 
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AGV detects an obstacle in the moving direction, it can 
apply automated braking or an avoidance maneuver. 

Visual perception is an alternative to laser scanner based 
perception for mobile robots. It can be used in a similar 
manner for autonomous navigation and obstacle avoidance 
[12]. Vision based perception is a common solution in the 
automotive industry for advanced driving assistance systems 
or autonomous driving in traffic environments. The 
monocular or stereo cameras are mounted behind the 
windshield and the field of view is only in the driving 
direction. A review on vision based detection, tracking and 
behavior analysis approaches is provided in [13]. In the case 
of mobile robots there is higher interest in the perception of 
the surrounding environment in all directions. The use of 
omnidirectional cameras can allow a 360 degree visual 
perception and have been used for navigation on mobile 
robots on ground [14], [15] and also on micro-aerial vehicles 
[16]. Using a pair of omnidirectional cameras it is possible to 
achieve omnidirectional stereo vision that allows depth 
computation and a more complex 3D perception of the 
surrounding environment [17], [18]. 

Besides the surrounding world perception, an AGV 
system should be able to detect and also track the state of all 
relevant obstacles in real time and with high confidence. The 
motion information of obstacles allows better understanding 
of a dynamic environment and a more efficient risk 
assessment. The tracking results can be used as additional 
information for collision avoidance and path planning.  

Usually, object tracking can be decomposed into three 
main steps: measurement extraction, data association and 
object state estimation. Various solutions have been 
proposed in literature. Some of them rely on directly tracking 
3D depth data [19], [20] while other approaches try to 
transform the high volume of information into intermediate 
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representations such as occupancy grids [21], [22], octree-
based data structures [23], [26] or digital elevation maps 
[24], [25]. For example, in [26] the data provided by a lidar 
sensor is mapped using octree-based representations. The 
moving objects are detected from inconsistencies between 
different scans. In [25] a particle filter-based solution is used 
to track position and speed of each cell in a dynamic 
elevation map. 

In order to reduce the processing time, various 
approaches rely on extracting and tracking high-level 
geometric models such as 2D or 3D bounding boxes [29], 
contours [27] or free-form polygons [28]. 

Although the use of more compact representations can 
provide better processing costs, sometimes it is not enough 
to achieve a robust tracking mechanism. As a solution, some 
approaches try to combine the geometric properties with 
color information [30], while other methods apply additional 
vision-based recognition steps in order to increase the 
robustness of the data association and object tracking [31], 
[32]. 

In this work we propose a solution for detecting and 
tracking obstacles in industrial environments for AGVs. In 
order to cover the entire surrounding of the AGV, we use an 
omnidirectional stereo vision based perception system. The 
employed fisheye cameras enable a 360 degree perception of 
the AGV’s environment. The stereo data is transformed into 
a more compact and more practical representation mode in 
the form of a classified digital elevation map (DEM). The 
DEM is used to generate obstacle hypotheses, each 
represented as a cuboidal and a free form polygonal model. 
The cuboidal model is used for the classification of each 
hypothesis as “Pedestrian”, “AGV”, “Large Obstacle” or 
“Small Obstacle”, while the free form polygonal model is 
used for estimating the object motion based on an Iterative 
Closest Point (ICP) approach. The obtained measurements 
are subjected to a Kalman filter based tracking solution, in 
which the data association takes into account also the 
classification results.  

The proposed solution was developed in the framework 
of the PAN-Robots FP7 EU project [1] for obstacle 
detection, classification and tracking by AGVs in a 
warehouse environment. 

II. ENVIRONMENT PERCEPTION AND INTERMEDIATE 

REPRESENTATION 

In order to detect and track the obstacles around the 
AGV, first the surrounding environment has to be perceived, 
then it has to be represented. We employ the omnidirectional 
stereo vision system proposed in our previous work [18]. 
Two fisheye cameras [38] are used to obtain a 360 degree 
stereo perception around the AGV. The cameras are 
mounted on a rigid rig at a height of 4.5 meters over the 
AGV and are oriented downwards as illustrated in Fig. 3a. 
The image stability to vibrations and oscillations is ensured 
by the fact that the ground in a warehouse is flat, the AGV 
speed is low (about 3m/s), while the frame rate is 20 fps. 

The fisheye image pairs (Fig. 3b) are decomposed into 3 
rectified image pairs using the proposed multi-channel 
rectification approach [18]. The GPU accelerated stereo 
matching algorithm proposed in [40] is used to achieve 360 
degree depth perception. The reconstructed 3D points are 
used to detect the ground plane and to build a digital 
elevation map (DEM), consisting of a 2D grid of cells with 
estimated heights. The size of a single cell is of 10x10cm 
and each cell is classified as “ground” or “obstacle” [18], 

Figure 3. (a) The omnidirectional stereo vision system. (b) Left and right fisheye images. (c) The classified digital elevation map (3D View) obtained 

from stereo fisheye images. 

(a) (c) (b) 

Figure 2. System Overview 



  

[39]. The classified DEM (see Fig. 3c) is used as a 
representation form for the surrounding 3D environment for 
further processing. 

III. OBSTACLE DETECTION 

The obstacle detection module consists in extracting a set 
of object hypotheses. First, the DEM cells are clustered into 
connected entities, called blobs. Then, for each individual 
blob, we extract a 3D bounding box and a free-form 
polygonal representation. Thus, each object hypotheses is 
defined by two separate models. The 3D cuboids are used to 
select the regions of interests for obstacle classification, 
while the polygonal models are used to extract the object 
motion by applying a fast Iterative Closest Point (ICP) 
alignment solution. The motivation of using polylines instead 
of more simplistic 3D boxes for the obstacle tracking comes 
from the need to improve the motion estimation accuracy. 
Thus, the ICP-based matching process relies on a set of free-
form models that are able to approximate the real obstacle 
shape with a number of points as small as possible. 

A. Extracting 3D Bounding Boxes 

In order to compute the object blobs, the DEM cells are 
clustered based on a proximity criterion. The connected sets 
which contain a number of cells smaller than a given 
threshold are considered noise and are filtered. For each 
individual set of grouped DEM cells, a 3D oriented box is 
computed (see Fig. 4, top). The resulted cuboid model is 

described by its center of mass ),,( ZcYcXcPc
, width W, 

length L, height H and an orientation θ  in the horizontal 

plane. 

B. Extracting Free-From Polygonal Models 

In addition to the cuboidal model, for each object 
candidate we compute a free-form polygonal representation 
(see Fig. 4, bottom). As the resulted polylines are able to 
better approximate the real shape of the obstacle, we use 
these models to determine the object motion by applying an 
ICP-based matching solution. For extracting the object 
delimiters, we use the Border Scanner algorithm, previously 
introduced in [33]. The basic idea of this approach is to 
collect the most visible obstacle points along virtual rays 
which extend from the origin position in the radial 
directions. Subsequently, the resulted contours are 
transformed into polylines. In order to avoid overlapping 
sub-problems (the cases when the same grid cell is traversed 
more than once) and to minimize the processing cost, an 
improved Border Scanner solution was proposed in [34]. 
Instead of re-computing the scanning axes at each frame, a 
predefined path structure is used to direct the searching 
process through the DEM space. This predefined map is 
called Policy Tree and is generated only once, in the 
initialization step. Thus, for accumulating the closest 
obstacle cells, a depth first search strategy is used. Compared 
to the previous Border Scanner variants, used in the context 
of driving assistance applications, the proposed solution 
includes two main differences. First, the obstacle delimiters 
are extracted by exploring the DEM grid corresponding to 
the entire area around the AGV. Second, unlike the previous 

Figure 4. Obstacle representation (a region of interest). Top: oriented 3D 

cuboids. Bottom: free-form polylines. 

Figure 5. Extracting obstacle delimiters - an illustrative example. (a) The 

classified DEM (top view). The object cells are shown with red. The 

ground plane cells are highlighted with blue. (b) The DEM cells are 

grouped into individual clusters (blobs). The example illustrates how the 

delimiter points Pk and Pq are selected along a virtual ray. (c) The two 

contour points are accumulated into separate lists. (d) A part from the 

fisheye image corresponding to the selected Region of Interest (ROI) in 

(a). (e) The extracted obstacle delimiters by using the classical Border 

Scanner approach. (f) The Multiple Depth Border Scanner (current 

solution). It can be observed that the proposed solution is able to extract 

more complete object shapes, including the occluded parts. 



  

implementations which consisted in extracting only the first 
visible obstacle points (one point per ray), current solution 
extracts the intersection points with other obstacles situated 
at different depths along the same ray (one point per 
obstacle). In other words, for each scanning axis and for each 
object intersecting that axis we collect its closest (not 
occluded) point (see Fig. 5). 

IV. OBSTACLE CLASSIFICATION 

For a better understanding of obstacles we classify them 
using visual codebook based image descriptors as: 
pedestrian, AGV or other obstacle. The 3D information is 
taken into consideration for limiting the minimum and 
maximum size of the obstacle candidates for each class (50% 
below minimum and 50% above maximum size). 

To obtain the classification features for an obstacle, first, 
the 3D bounding box is projected into the left fisheye 
intensity frame and is cropped out as a rectangular image. 
Due to the nature of the fisheye lens, the image is radially 
symmetrical. Therefore, each obstacle image is rotated 
according to the polar angle of the obstacle’s position in the 
fisheye image, by considering the fisheye image center as the 
origin for the polar reference system. Rotation is done 
relatively to the 90 degrees polar angle. The relationship 
between obstacle orientation and polar angle can be seen in 
Fig. 6. To achieve scale invariance, the image is resized to 
have a fixed width of 100 pixels, if the width is greater than 
the height. Otherwise it is resized to have a fixed height of 
100 pixels. 

Dense HOG descriptors are computed over the 2D 
obstacle image. A 24 dimensional descriptor vector is 
obtained at each pixel position. The descriptor vectors are 
discretized using a visual codebook (or dictionary) 
consisting of 100 visual words. After discretization each 
pixel position is represented by one of the hundred visual 
words and the image can be described by the distribution of 
words. Implementation details regarding descriptor 
computation and codebook training can be found in our work 
on pedestrian detection [41]. 21 image regions are 
considered by applying the following partitionings: 1×1, 2×2 
and 4×4 (3 level spatial pyramid [42]). By computing the 
histogram of visual words for the 21 regions, we obtain 2100 
individual classification features. 

 We train two binary Ada-boost [43] classifiers for 

pedestrians and AGVs. 2048 boosting rounds are used to 
train an ensemble of two-level decision trees learned over the 
2100 classification features. The inverse of the boosting 
decision function value is used as probability estimate. If an 
obstacle is classified as pedestrian and also as AGV (for 
example when both are visible in the obstacle image) then 
we consider the class with the higher probability. If an 
obstacle is neither classified as pedestrian nor as AGV, then 
it is labeled as other small obstacle if it has a height of less 
than 50 cm, or other large obstacle otherwise. 

V. OBSTACLE TRACKING 

The object tracking module is aiming to estimate, 
recursively in time, the state of the detected obstacles around 
the AGV given all measurements up to the current time t. 
The object tracking solution is based on a Kalman filtering 
mechanism used for each individual detected target. In our 

case, the obstacle state 
tX , at a time t, is defined by the 

following variables: 

 ],,,,,,[ tttttttt HLWvzvxzxX =  (1) 

where 
tx  and 

tz  represent the object position, 
tvx and 

tvz  

are the object speed components and Wt, Lt and Ht describe 
the object width, length and height properties. 

We consider that the coordinate system of the vision 
based perception module is situated in front of the AGV 
vehicle, with the X axis pointing to the right and Z axis 
pointing towards the AGV direction. The overall obstacle 
tracking solution can be described by the steps that follow 
below. 

A. AGV Motion Compensation 

Before estimating the dynamic properties of other 
obstacles, we should also take into consideration the AGV’s 
motion. The PAN-Robots AGV localization parameters are 
provided by a dedicated self-localization system [35] that is 
able to estimate the AGV’s position in the warehouse with an 
accuracy of 1cm. At each frame, the localization module 

provides the AGV’s orientation
AGVα , its coordinates in the 

warehouse reference system, and a timestamp. Following a 
circular motion model, a point from the previous coordinate 
system is transformed into the current coordinate system 
according to: 
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where, T

CACA tztx ],[  represents the distance between the 

camera and the origin of the AGV reference system, and 
T

AGVAGV tztx ],[  is the AGV translation vector between the 

previous and current frames in the warehouse coordinate 
system. 

Figure 6. Ostacle classification: AGV – red; Pedestrian – green; Other 

Large – light blue; Other Small – dark blue. 



  

B. State Prediction 

Before incorporating the new measurements, the state of 

each track is predicted from the previous information 
1−tX  

according to its state transition probability )|( 1−tt XXp . By 

considering that the tracked obstacles are described by a 
linear motion model, the state parameters are predicted from 
its previous state compensated with the AGV’s motion 

T

ttttztxttt HLWvvzxX ],,,,,,[ 1111,1,

*

1

*

11 −−−−−−−− =  according to:  

 wXAX tt += −1
 (3) 

Equation (3) defines the motion model described by a state 
transition matrix A and a random noise, which is drawn from 

a zero mean Gaussian distribution ),0(~ QNw  with 

covariance Q.  The covariance Q is adjusted by considering a 
maximum allowed obstacle acceleration. 

C. Data Association 

The data association consists in assigning the new 
extracted objects to the predicted targets. First we compute a 
distance based association metric by counting all point-to-
point correspondences between the newly extracted object 
delimiters and the nearest tracks. First, each contour of a 
tracked object from the previous frame is projected into the 
current frame coordinate system according to the object’s 
dynamic parameters and the AGV motion. Then, for each 
predicted contour point the closest measurement point is 
selected as the association candidate. In order to optimize 
this point-to-point selection phase, the closest associated 
points are determined in O(1) by using pre-computed 
distance transforms as a look-up table, in which each cell 
stores the position of the closest contour point. The data 
association is performed in two directions: from 
measurements to targets and from targets to measurements. 
In order to avoid the ambiguous association cases, when the 
same observation may belong to multiple tracks or vice 
versa, we also take into account the object types provided by 
the classification module. 

D. Computing the Object Motion 

For extracting the obstacle motion we use an Iterative 
Closest Point-based solution [36] previously applied by us in 
a driving assistance application [37]. The ICP technique is 
used to compute the optimal transformation between the 
tracks and the associated observations by minimizing the 
alignment error. Having the set of points 

}..1|{ arg

arg

arg ett

ett

iett NipS =  that describe the tracked object 

contour and the set of points }..1|{ meas

meas

jmeas NjpS =  

describing the extracted contour, the optimal rotation R and 
translation T are computed by iteratively minimizing the 
following objective function: 
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where N is the number of point-to-point correspondences 

),( arg meas

k

ett

k pp that  are determined by selecting for each 

point ett

kp
arg in the target contour 

ettS arg
 the closest 

corresponding point meas

kp  in the newly observed contour 

measS . Since the estimated track-to-measurement 

transformations represent the difference between the 
predicted state variables and the current observation, the 
measured object speed can be calculated as the sum of the 
newly extracted motion components and the predicted speed 
parameters (the initial guess). 

E. Object State Update 

Having a measurement vector defined by the computed 
speed components and the extracted cuboid position and 
size, the new object state and its covariance are updated by 
using the standard Kalman filter equations. 

VI. EXPERIMENTAL RESULTS 

The proposed system was tested in various industrial 

warehouse environments including static and dynamic 

obstacles of different types. For the experiments we used a 

GPU equipped industrial PC that was installed on a PAN-

Robots AGV [1]. The whole perception system runs in real-

time at 10 frames/second. 

Fig. 7 presents a scenario with moving pedestrians around 

the AGV. Each object is represented by a cuboid model with 

a velocity vector (red color). Fig. 8 illustrates how the 

obstacles are tracked in time. Each individual obstacle is 

Figure 7. Dynamic obstacles and their speed vectors (red). 

Figure 8. Obstacle Tracking. (a) The detected objects are illustrated with 

different colors. (b) The trajectories generated by each tracked object (top 

view). 



  

represented by a unique ID (a different color). Fig. 8b shows 

the generated trajectories by the tracked objects. A short 

video presenting the results can be accessed at [44]. 

For quantitative results we used a test scenario including 

static and dynamic obstacles. In order to generate ground 

truth data we tracked and annotated manually 16 obstacles 

for 2165 frames. The ground truth targets were in the 

perception range for a number of frames varying between 50 

and 900. Table I. provides an overview of the computed 

performance metrics for tracking evaluation. During the 

2165 frames there were 31 miss-associations, i.e. the 

tracking ID of an obstacle has been changed, mostly due to 

difficult occlusion cases. The ground truth obstacles were 

detected for 94.3% of the time and were correctly tracked for 

92.8% of the time. The average localization error was of 

0.157 m, while the average velocity error was of 0.48 m/s. 

VII. CONCLUSION 

The main purpose of this work was to provide a robust 

perception solution for AGVs in order to detect and track 

obstacles in dynamic industrial environments. We proposed 

a system that uses omnidirectional stereo cameras for 360 

degree surround perception. The classified digital elevation 

map, resulting from the stereo data, is used to generate 

obstacle hypotheses. The obstacle tracking solution relies on 

two representations: a 3D cuboid used for obstacle 

classification and a free-form polygonal model used for its 

motion estimation. 

The proposed solution was implemented and tested on 

AGVs in an industrial warehouse environment. The obtained 

experimental results are promising, however the maintaining 

of tracking for temporarily occluded obstacles is still a 

challenge and its further research will be of interest in the 

future. Also, the accuracy and stability can be improved by 

removing static obstacles like walls or by incorporating the 

intensity information in the data association stage. 
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