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 

Abstract—One of the indispensable functions of a self-driving 

vehicle is to estimate its dynamic world, which includes various 

traffic participants within complex driving scenarios. The 

estimation mechanism has to be flexible, fast and robust. However, 

achieving these requirements is still challenging. Dynamic grid 

maps are one of the possible ways to combine and estimate the 

multi-sensory information at an intermediate level. In this paper 

we present a particle filter-based grid map estimation which 

addresses several challenges. First, we propose multi-layer particle 

filter-based tracking solution (MLPT) that uses two measurement 

grid channels as input: an occupancy grid and a semantic grid. 

Second, we introduce the concept of structuring the particle 

population into batches, where each batch represents an 

individual tracklet. Rather than using one particle filter for 

estimating the entire grid, we employ multiple individual particle 

filters (tracklets) that share the same world. Third, a concept of 

“self-localizing” tracklets is presented. Similar to simultaneous 

localization and mapping approaches, in our tracking solution 

every particle state is extended with a small set of landmarks. This 

allows a tracklet to “self-localize” itself with respect to tracked 

object boundary and leads to a more precise velocity estimation. 

Finally, we introduce an advanced tracklet management 

mechanism that allows executing some specific particle filter 

operations at the tracklet level. This optimization provides 

multiple advantages. Experimental results with ground-truth data 

show improvement in the estimation accuracy in comparison to 

similar techniques. 

 
Index Terms—Particle Filter, Grid Map, Tracklets, 

Autonomous Driving, Object Tracking, Self-Localizing Tracklets. 

 

I. INTRODUCTION 

NE of the key requirements of an autonomous vehicle is 

the ability to accurately perceive the environment along 

with its complex infrastructure. The process of acquiring 

knowledge about a vehicle’s surrounding world is a basic 

prerequisite for advanced automated driving functions, 

including collision avoidance, path planning and motion 

control. To reliably model the environment, an estimation 

system must address the following challenges: support large 

amounts of varying measurements from different perception 

subsystems; decouple dependence on specific sensor 
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configurations; synchronize and filter input measurement data; 

detect and track critical traffic participants within an 

autonomous vehicle’s drivable field-of-view.   

In order to obtain a consistent representation in various 

complex scenes, obstacle detection and tracking algorithms rely 

on information acquired from different sensors such as radars 

(for directly estimating the object motion [3]), LiDAR (for a 

more precise obstacle position and shape [5], [6], [7]), and 

vision (for acquiring both range and semantic information [8], 

[9], [10]). Moreover, to generate a deeper understanding of the 

world, existing architectures rely on combinations of sensors to 

offset the shortcomings of individual sensor modalities [10], 

[11], [12]. 

Various techniques for modeling and tracking traffic 

participants have been proposed over the past years [1], [2]. 

Existing approaches can be divided into two main abstraction 

levels. Higher level abstraction methods focus on object-level 

processing. In most solutions, the objects are represented by 

simple and intuitive models such as boxes [13] or L-shapes [5]. 

In order to increase the robustness, various techniques try to 

include models with adaptive geometry such as boxes with 
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Fig. 1. Multi-Layer Particle Filter based Tracking (MLPT) for Dynamic Grid 
Maps. Top left and right images illustrate a snapshot from the traffic scene, 

provided by vehicle documentation cameras. The result of estimating dynamic 

objects is represented as a set of tracklets (visible as speed vectors in the 
image). The tracklet colors describe moving direction of the target objects. The 

color saturation encodes the velocity magnitude (white is for stationary 

objects).  
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variable size [6], parametrized curves [14], deforming polygons 

[15], [16], rigid objects described by point sets [18], voxels 

[19]. However, object-level processing comes with its own 

limitations. As more sensors contribute to perceive the same 

world or when input measurements become noisy and cluttered, 

common functions, such as object-level data association, 

matching and grouping, require additional approaches to deal 

with issues like incorrectly grouped targets or inaccurate state 

parameter estimations. Therefore, in order to overcome these 

object-level challenges and reduce computational complexity, 

many solutions focus on modeling the dynamic world at a lower 

level of abstraction such as the ones described in [8],[18].  

A well-known technique that has been used for lower level 

representation and tracking is grid-mapping. In a grid map, the 

surrounding space is tessellated into rectangular grid cells. Each 

cell is an independent building block of the space that stores 

properties like occupancy probability [20]. The traditional 

approaches incrementally update the cell occupancy values, 

assuming that the surrounding environment is static.  

Additional approaches take advantage of the temporal 

inconsistencies between occupied and free space. For example, 

in [21], an object is labeled as “moving” if its location was 

previously sensed as free space. Other approaches explicitly 

consider the uncertainties to build the dynamic map of the 

environment. In [22] a Bayesian Occupancy Filter is proposed, 

where each grid cell state is represented by its occupancy and 

2D velocity components. 

More recent approaches propose different dynamic grid map 

estimation variants based on particle filters [4], [23], [25], [27], 

[29], [30], [31]. The grid cell state is approximated by a set of 

samples. Particles are not associated permanently to one grid 

cell state but are propagated according to their own motion 

model and, subsequently, are reassigned to new destination 

cells. Then, all particles receive a weight proportional to the 

occupancy belief of the new destination cell. When the new 

target cells are sensed to be occupied, higher weights are 

assigned to those particles. In general, a particle predicted in the 

middle of a larger object can be assigned to any of the occupied 

cells and still be rewarded with a high weight. In other words, 

the particles receive their weights without being aware of their 

own position with respect to the tracked object hypothesis. This 

results in higher uncertainties and slower algorithm 

convergence (see Fig. 5, top). In order to improve the estimation 

accuracy, especially for larger objects, we would need to 

employ extra features from various sensors or increase the 

number of particles. Therefore, a new challenge arises: what is 

the best way to incorporate more knowledge about the 

surrounding world in the particle state, increase the system 

flexibility, and keep a fixed memory space for each particle? 

Starting from our previous work, presented in [17], we 

address the above described problems and present four concepts 

to improve the particle filter-based grid map estimation.  

 The first concept treats the dynamic grid-map estimation as 

a multi-channel measurement processing. We propose a Multi-

Layer Particle Filter based Tracking solution (MLPT) that uses 

two evidence grids as input: an occupancy grid map channel, 

which contains the occupancy belief for each individual cell, 

and a semantic grid map channel, in which every grid cell is 

described by the most likely object class label. 

The second concept adopts the idea of structuring the entire 

particle cloud into smaller independent batches of particles, 

where each batch represents an independent density. We refer 

to this batch of particles as a tracklet (see. Fig. 1). Instead of 

using one particle filter for estimating the entire grid, we 

employ multiple individual particle filters (tracklets) that share 

the same grid world and describe the state of individual object 

parts. Although particles from different tracklets can travel 

between different cells and share the same measurement 

information, they are linked to their own uniquely identified 

group (i.e. tracklet).   

The third concept introduces tracklets that can “self-localize” 

themselves with respect to tracked object boundary, by 

extending the particle state with additional knowledge of the 

object shape. Like simultaneous localization and mapping 

approaches such as FastSLAM [32], in the proposed tracking 

solution, every particle model is extended with a small set of 

landmarks that are randomly selected from the object contour 

(see Fig. 4). Subsequently, the “anchored” particles contribute 

to a more precise tracklet state estimation (see an intuitive 

illustration in Fig. 5, bottom).  

Finally, the last concept describes an advanced tracklet 

management mechanism. Operations such as resampling, 

initialization and removal are moved to the tracklet level. On 

the one hand, this allows iterating over a fewer number of 

tracklets. On the other hand, some processing steps are done in 

batches by manipulating individual subsets of particles 

belonging to one single tracklet. Specifically, we adopt a faster, 

two-level sampling mechanism, including both tracklet and 

particle levels. A priority-based mechanism is used to sample 

new tracklets from the measurement space, in order to keep the 

number of tracklets bounded. 

The above proposed concepts provide the following 

advantages: 

• Less memory consumption: Common grid cell properties 

(e.g. semantic label, object ID etc.) can be stored at the 

tracklet level instead being explicitly replicated at the 

particle level. 

• Faster processing: Tracking operations (creation, deletion or 

update) work on groups of particles at the tracklet level 

instead of processing each single particle individually. 

• Increased accuracy: Because each particle is “anchored” to 

a fixed sub-set of contour features, we obtain a decreased 

effect of “drifting” tracklets and, consequently, more precise 

velocity estimation, especially in the case of large objects 

described by uniform occupancy values. 

• Improved robustness: Having individual particle filters can 

help in the cases when only some parts of the grid map 

receive new measurements. Only the tracklets that are 

associated to those specific measurement cells can be 

selectively updated, instead of processing the entire 

population of particles. 

• Increased flexibility: Having data organized in batches can 

facilitate the development on parallel hardware 

architectures. 
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The rest of the paper is structured as follows. The next 

section gives an overview of existing grid-based particle filter 

solutions. Section III describes the overall system processing 

flow, the concepts of self-localizing tracklets and multi-channel 

grid map estimation. The MLPT algorithm and its main steps 

including the tracklet estimation and tracklet management are 

described in Section IV. Section V presents the experimental 

results, followed by the conclusions in Section VI.   

II. RELATED WORK 

This section presents an overview of existing grid-based 

particle filter solutions, provides a comparison and points out 

the limitations. 

A first grid-based particle filter solution is introduced by 

Danescu et. Al, in [23]. The entire dynamic grid is represented 

by a population of particles. Each particle represents an 

individual hypothesis which can move from cell to cell. The 

particle state is defined by position and speed and is predicted 

across the grid depending on its motion model and motion 

parameters. Particles are directly associated to grid cells based 

on their position and thus contribute to the grid cell’s occupancy 

and velocity distribution. The occupancy probability is 

described by the number of particles in that cell. The 

measurement data used in [23] is a raw obstacle grid obtained 

by processing the stereovision-generated elevation map.  

 Another grid-based particle filter solution is described in [4], 

where the dynamic grid map estimation is formulated as a 

Random Finite Set problem. Techniques from the field of finite 

set statistics like the hypothesis density filter (PHD) and the 

Bernoulli filter (BF) are applied to estimate the dynamic state 

of grid cells. The Dempster-Shafer theory of evidence (DS) is 

then used to update the occupancy state of a dynamic cell. The 

used measurement data is obtained by laser and radar sensors. 

While solutions proposed in [4] and [23] uniformly estimate the 

full space including both static and dynamic components, other 

approaches focus on estimating static and dynamic parts 

separately [24], [25], [26], [27]. In [24] and [27] the particles 

are only associated to dynamic fields. The static infrastructure 

is derived by a traditional occupancy grid update mechanism. 

Therefore, in [24] a new representation of the Bayesian 

Occupancy filter (BOF) is used. Alternatively, in [25] and [26] 

the world model is represented by two distinct sets of particles, 

i.e., static (particles with zero velocity) and dynamic. In [27], 

the static and dynamic occupancies are directly updated by the 

map. The authors use dynamic particles only to estimate cell 

velocity distributions and to predict the dynamic occupancy 

evidence of the map. The input measurements are provided by 

laser scanners and short-range radar sensors.  

In [29], [30] and [31] the particle state is extended to 

incorporate multiple observation cues and adopt various 

heuristics to improve data association and processing time. 

Depending on the architecture, world model and sensor setup, 

the most recent algorithms enrich the particle state with 

additional properties like object heights [29], grayscale 

intensities [29], [30], patches [30], and object IDs [28], [31]. 

For example, in [29], the particle state is extended with a new 

dimension, the height. The authors in [30] use two grid maps – 

an intensity grid and an occupancy grid. The two grids are used 

to extract a set of 3x3 rectangular patches. To estimate the state 

of these patches, a Rao-Blackwellised solution is used, where 

each particle incorporates the intensity and occupancy 

information and receives a weight based on how well the 

particle patch matches the extracted measurement. Although 

the patch-based approach can include the extra appearance 

TABLE I 
COMPARISON OF GRID-BASED PARTICLE FILTER SOLUTIONS 

 
Grid-based Particle Filter 

(PF) variants 
Sensors Occupancy cell estimation Estimated result 

[23] Particles for estimating static 

and dynamic cells 

Stereo-vision sensor Number of particles in the cell Particle-based occupancy grid 

[4] Particles for estimating static 
and dynamic cells 

LiDAR and radar sensors Dempster-Shafer theory of evidence Dynamic occupancy grid 

[24] Particles for estimating 

dynamic cells only 

LiDAR sensor Extended Bayesian occupancy filter  Dynamic Occupancy grid 

[25] Particles for estimating static 

and dynamic cells 

LiDAR and radar sensors Dempster-Shafer theory of evidence Dynamic occupancy grid 

[26] Particle population is 
divided into subsets of static 

and dynamic particles 

Multi-layer laser scanners and 
short-range radar sensors 

Dempster-Shafer theory of evidence Evidential dynamic occupancy 
grids 

[27] Particles for estimating 
dynamic cells only 

Laser scanners and short-range 
radar sensors 

Dempster-Shafer theory of evidence  Evidential occupancy grid with 
radial velocity 

[29] Particles for estimating static 

and dynamic cells 

Stereo-vision sensor Ratio between the number of particles 

having a height > T and the total 
number of particles in the cell 

Particle-based dynamic elevation 

map 

[30] Multiple Rao-Blackwellised 

particle filters for estimating 
static and dynamic cells 

Stereo-vision sensor Binary Bayes Filter for every particle Dynamic occupancy grid with 

grayscale intensity information 

Proposed 

Solution 

Multiple individual Rao-

Blackwellised particle filters 
(up to 128000) – self-

localizing tracklets 

LiDAR, stereo-vision, radar Dempster-Shafer theory of evidence at 

the particle level 

Dynamic occupancy grid and 

tracklets 
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information, it is limited only to the close neighborhood around 

a particle and its complexity increases for larger blocks. 

Table I summarizes the characteristics of existing particle 

filter based methods for estimating dynamic grids, including the 

proposed solution. 

In summary, existing grid-based particle filters are promising 

but come with two limitations. The first limitation is that most 

solutions use one population (one multi-modal probability 

density) of particles to estimate the state of multiple grid cells 

that are considered independent (one cell is described by its own 

probability density). A particle can migrate from one cell to 

another cell, becoming decoupled from its previous source cell 

density and reassigned to a new destination cell density. 

Because particles are regrouped into new independent cell 

estimators at each iteration, the identity of the tracked cell is 

lost. However, this information can be retained if additional 

heuristics are used. In other words, the particles can identify the 

existence of an object, in general, but not the existence of a 

“particular” object part or cell. In order to improve estimation 

and data association, the authors in [28], [31] adopt the idea of 

linking particles to objects by extending them with object IDs. 

It is important to note that the proposed methods still ignore the 

cell identities and must remap every particle to every cell. 

The second limitation in grid-based particle filters is that the 

estimation of cells belonging to large and uniform grid areas are 

usually described by higher uncertainty and lower accuracy. For 

example, a particle that is predicted in the middle of a larger 

object can be attached to any of its occupied cells. This could 

lead to ambiguous data association and, in the end, higher 

uncertainties. In order to improve the estimation accuracy for 

uniform grid areas (i.e. in the middle of large objects with the 

same occupancy values), extra features from various sensors, 

larger patches, or more particles would be needed.  

In the following we present our proposed MLPT solution, 

which is designed to overcome the above discussed limitations.  

III. SYSTEM OVERVIEW 

This section presents an overview of the overall estimation 

system and highlights its primary subcomponents as shown in 

Fig. 2. The processing pipeline can be divided into three main 

steps. In the first step, raw sensor data is acquired by each 

sensor interface, preprocessed, and transformed into compact, 

medium-level data structures. In addition to measurement 

values, each sensor is described by its own measurement model. 

Lidar point clouds and stereo vision images are both 

transformed into a more compact Stixel-based representation. 

The Stixel is a convenient way to model the surrounding 

environment as vertically oriented rectangles that can 

incorporate properties like position, depth, size and semantic 

information of individual object parts [8], [9]. Unlike lidar and 

vision Stixels, the radar locations are compressed to a set of pre-

filtered target points, which include the Cartesian position and 

velocity. More details about radar sensors and its data 

representation is presented in [33]. 

In the second step of the processing pipeline, compact sensor 

measurements are integrated into separate evidence grid 

channels. A channel can be defined as an independent 2D grid 

representation that accumulates a group of sensor observations, 

from one or multiple sensors. In this work, two measurement 

grid channels are computed – an occupancy grid channel and a 

semantic grid channel. However, it must be noted that the 

proposed method can be easily extended with additional grid 

channels using gradients or height properties. 

The measurement occupancy grid channel is computed by 

accumulating the range measurements from all available 

sensors during a given fixed time interval. New measurements 

are then integrated into the occupancy grid by using the 

Dempster-Shafer theory of evidence. Thus, each cell is 

described by a belief mass of occupied, free or unknown, and 

can be converted into a conventional occupancy probability by 

using the pignistic transformation. More details about 

Fig. 2. System Overview. 
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measurement occupancy grid calculation is presented in [4].  

The measurement semantic grid channel combines the 

semantic information provided by both the Stixel world and the 

classified radar targets [33]. Every projected object label 

identifies a given object class (e.g. pedestrian, bicycle, vehicle 

etc.) and has an associated confidence score [9]. Due to memory 

constraints, after integrating labels into the semantic channel, 

we keep only the top K object labels per cell, based on their 

highest accumulated scores, instead of storing a full histogram 

of all the accumulated labels per cell.  

It is important to note that both measurement grid channels 

are described by the same size and resolution. Also, both 

channels are aligned in time (the same time interval is used to 

integrate input measurements) and space (a given area in world 

coordinates is projected into the same cell indices in both grids). 

The proposed hybrid particle filter-based estimator is the last 

step of the processing pipeline and is described in the following 

sections. 

IV. DYNAMIC GRID MAP ESTIMATION CONCEPTS 

 The primary objective of the tracking problem is to estimate 

the target’s current state �� from a set of noisy observations ��:� 
received up to a given time t. The tracking problem can be 

formulated as a recursive Bayesian estimation process to 

estimate the posterior probability distribution �(��|��:�), by 

using the probabilistic motion model �(��|����) of the target 

and a defined measurement model �(��|��): 

�(��|��:�) = 
�(��|��) � �(��|����)�(����|��:���)����� 

where 
 denotes the normalization constant. 

A possible implementation of the Bayes filter update rule 

described in (1) can be realized by using a particle filter-based 

estimator. In a particle filter algorithm, at each moment in time 

t, the posterior probability distribution �(��|��:�) is 

approximated by a set of N individual particles {〈��[�], ��[�]〉}���..�, where each particle ��[�]
 represents a 

hypothesis of the tracked state �� and has an assigned weight 

��[�]
 according to how well the particle matches the 

observations. 

In general, standard particle filters can be used for solving 

various estimation problems described by non-linear motion 

models or non-linear measurement processes. Although particle 

filters are relatively simple to implement, they are not suitable 

for estimating larger states. This limitation comes from the fact 

that the number of particles required to approximate the object 

state tends to scale exponentially once more parameters are 

incorporated into the state ��.    
As described in applications like object tracking [6], [16], 

[30] or simultaneous localization and mapping [32], a Rao-

Blackwellised particle filter (RBPF) is applied as a common 

approach to estimate larger states [34]. The main idea of a 

RBPF algorithm is to draw samples only from a part of the state 

(e.g. object position and velocity), while the other state 

parameters are just carried with particles and are estimated 

analytically by using, for example, Binary Bayes filters, 

Dempster Shaffer-based updates, or Kalman Filters (one per 

particle). In this work we use the same idea of Rao-

Blackwellisation to be able to handle “richer” particles. The 

tracking problem is therefore modeled as two decoupled 

recursive Bayesian estimations which, in the end, are combined 

into one single estimator. The two estimation parts are self-

localizing tracklets and multi-channel grid estimation.  

A.  Self-localizing tracklets 

The main idea of the following proposed concept is to 

improve the particle weighting by extending its state with 

additional knowledge about object shape. We assume that a 

given dynamic grid cell c is part of a larger object hypothesis.  

Therefore, apart from its position ( ! , "!) and velocity (#$,! , #%,!), a dynamic grid cell c is also described by its relative 

position to K object landmarks & = {'�, … , ')}. These 

landmarks are initialized by selecting a random set of K points 

from the same object contour (see Fig. 4). It must be noted that, 

in order to take into account, the change in the object geometry, 

the relative distances from cells to their selected landmarks 

must also be recursively updated, at each measurement 

 

 

Fig. 3. Particles, tracklets and objects that share the same world. The particles 

are grouped into tracklets. Every tracklet state is updated with an individual 
particle filter, by employing its own particles. For persentation simplicity, the 

particle features are not included here, but are presented in the next 

image.Subsequent tasks like object clustering, can be performed by using the 

multiple estimated tracklets.  

 

 

Fig. 4. Particle model. In the example the particle is created for an L-shape 
object (gray blob). The particle model is described by its position (x.y) and 

four reference object landmarks (blue). The landmarks are selected form the 

object contour (light gray). The ellipses represent the landmark covariances. 
Although the example presents only one particle assigned to agiven cell (red),

similar particles are initialized in multiple locations, covering the entire object.
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iteration. 

For every newly measured grid cell we create a fixed set of 

N particles. This group of particles will represent an individual 

particle filter-based estimator – a tracklet *� (see Fig. 3). 

Therefore, instead of maintaining and updating one larger set of 

particles for the whole grid, we use multiple, smaller, 

independent populations of particles organized into tracklets, 
(see Fig. 3). A tracklet position and velocity at time t is denoted 

by +� = [ � , "� , #$,� , #%,�],. Additionally, the tracklet state is 

extended by a unique set &� of K random landmarks selected 

from the same object contour. The tracking problem can be 

formulated probabilistically as estimating the following joint 

posterior distribution: 

 �(+�, &�|��:�) 

 As in FastSLAM methods [32], tracklet state estimation can 

be implemented with a Rao-Blackwellised particle filter [34]. 

Thus, the joint posterior (2) is factored into independent 

estimators as: 

 �(+�, &�|��:�) = �(+�|��:�)�(&�|+�, ��:�) 

 = �(+�|��:�) ∏ �.'�,/0+�, ��:�123��  

The first distribution �(+�|��:�) in (3) describes the tracklet 

position and velocity and is represented by a set of particles. 

The remaining factors �.'�,/0+�, ��:�1 are the landmark 

posterior distributions, which can be marginalized out 

analytically, i.e. every particle carries with it K Gaussian 

distributions (one per landmark) which are updated with 

Kalman Filters [35]. 

The main motivation of extending the tracklet state with a 

fixed set of randomly selected features is the need to improve 

the particle-to-measurement matching (see Fig. 4), through a set 

of “anchor” points. Intuitively, this leads to an improved 

stability in positioning tracklets with respect to a rigid object 

shape, therefore in fewer “drifting” tracklets (see Fig. 5). By 

making the analogy with the existing SLAM approaches, it also 

can be said that the presented tracklets are able to self-localize 

themselves with respect to the object boundary. By 

incorporating object feature information as part of particle state, 

a link between low-level particle world and high-level object 

world is created.  

 

B.  Multi-channel grid estimation 

 Multi-channel grid estimation involves integrating the 

measurement information structured into two grid channels: an 

occupancy grid and a semantic grid.  

Similar to the previous section, for every newly measured 

grid cell, at time t, we define a tracklet as an independent 

particle filter-based estimator. Besides its dynamic properties +�, every tracklet is represented by an appearance vector At, 

which combines the raw sensor data of the occupancy and 

semantic channels. The appearance vector At is thus completely 

described by a belief mass for occupied 4�5, a belief mass for 

free 4�6 , and a semantic label lt: 

 7� = [4�5, 4�6 , 8�], 

In the context of Dempster-Shafer theory of evidence, both 

masses of occupied 4�5 and free 4�6  can be converted into a 

conventional occupancy probability �(9�) by using the 

pignistic transformation [37]. Thus, similarly to (3), the tracklet 

state estimation is described by a joint estimation problem of its 

motion +� and appearance 7� and can be written in a factored 

form as: 

 �(+�, 7�|��:�) = �(+�|��:�)�(7�|+�, ��:�) 

 = �(+�|��:�)�(9�|+�, ��:�)�(8�|+�, ��:�) 

where �(+�|��:�) represents the posterior over tracklet position 

and velocity +�, �(9�|+�, ��:�), and �(8�|+�, ��:�) are tracklet 

occupancy and semantic label posteriors that are conditioned on 

its motion +�.   
C.  Combining the two problems into one estimator 

The two decoupled problems described in the previous 

section can be combined into one estimator. Therefore, we can 

say that a dynamic tracklet *� is fully described by its dynamic 

properties +�, appearance 7� and a set of object landmarks &�, 
i.e., *� = {+�, 7�, &�}. Consequently, the two update equations 

(3) and (5) can be written as a single estimator as: 

 �(*�|��:�) = �(+�, 7�, &�|��:�) 

 = �(+�|��:�) �(9�|+�, ��:�) 

 �(8�|+�, ��:�) ∏ �.'�,/0+�, ��:�123��  

 To approximate this posterior, we initialize for each 

occupied cell a tracklet *� that is described by its position, 

speed, landmarks and appearance components. The full 

posterior density �(*�|��:�) of the tracklet *� at time t is 

represented by a set of N weighted particles: 

 {+�[�], :�[�], 8�[�], ('�,�[�] , Σ�,�[�] ) … , ('�,)[�] , Σ�,2[�] ), ��[�]}����  7

where +�[�]
 represents the position and velocity of a particle, :�[�] = [4�5,[�], 4�6,[�]]< is the particle mass vector including 

both masses for occupied and free, 8�[�]
 is the particle semantic 

label, ��[�]
 denotes the particle weight, '�,/[�]

 and Σ�,3[�]
 define the 

mean and 2x2 covariance of the k-th landmark (see Fig. 4), 

assigned to the i-th sample, for = = 1, … , ?, and @ = 1, … , A.  

For the purpose of implementation, we adopt the concept of 

Rao-Blackwellisation, i.e. marginalizing out a part of the state. 

That is, each tracklet is specified by a set of particles that are 

sampled from the position and velocity. The appearance and 

landmark properties are associated with each sample, thus 

contributing to a more precise weighting. Fig. 5 presents an 

intuitive example about how particle landmarks are used as 
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anchor points to improve the particle weighting. Subsequently 

they are updated in closed form at particle level. 

V. MULTI-LAYER PARTICLE FILTER-BASED TRACKING 

This section describes in more details how the Multi-Layer 

Particle Filter Tracking (MLPT) is implemented by taking into 

consideration the probabilistic model that was described 

previously. At each point in time t, the dynamic world is 

represented by a fixed list of Nh weighted tracklets *�[�]
: 

 BC = {*�[�], �D[�]}����E  

Every tracklet *�[�]
 maintains an individual population of 

particles (7) and is regarded as a decoupled particle filter 

instance with its own prediction and update steps. Although a 

tracklet is estimated independently, it is also considered as a 

part of a higher level estimation mechanism, at the grid level. 

In other words, a tracklet *�[�]
 is seen as a meta-particle having 

its weight �D[�]
 (based on the sum of particle un-normalized 

weights) and being created and destroyed by the same particle-

filter specific resampling mechanism. In the following we will 

first present in detail how a particle filter is applied locally at 

the tracklet level and then, how the population of tracklets, 

treated as meta-particles, are managed at the grid level. 

A.  Particle Filter Based Tracklet Estimation 

Once new measurements are received, the following steps 

recursively estimate the dynamic state for each tracklet as well 

as each grid cell: 

 

1) Initialization: In the initialization, a new tracklet is 

created for every new measurement cell. Every tracklet is 

described by a set of N particles with random positions around 

the measurement cell and random velocities sampled from an 

initial distribution. At this step, all particles are initialized with 

the same occupancy masses and semantic values that are 

received from the corresponding input channels. Additionally, 

the new tracklet state is extended with a unique set &� of K 

random landmarks that are selected from an object contour. For 

assigning new landmarks, the following pre-processing steps 

are performed. First, every new cell must know which object it 

belongs to. We perform a pre-clustering step, similar to the 

classical connected component algorithm [39], in order to 

identify connected components in the measurement grid space. 

Every connected component approximates an object candidate 

(a blob) identified with a unique ID. Subsequently, every 

measurement grid cell stores the ID of its corresponding 

connected component. Second, in order to enable the selection 

of landmarks from a blob boundary, its contour is extracted by 

collecting all the blob cells that have at least one non-occupied 

neighbor cell (free cell or unknown). This operation requires 

one pass over the measurement occupancies and proves to be 

sufficiently fast, especially when the input data is organized in 

a compact form (excluding empty cells and including only the 

list of measurements pointing to the corresponding 2-D 

positions in the grid). Finally, after determining the 

correspondences between one possible object, its contour and 

its new tracklets are initialized with a fixed set of landmarks. 

For every tracklet we first identify a random index i on the 

object contour. Starting from that index, the initialization step 

selects K landmarks that are uniformly distributed along the 

contour. Specifically, a landmark is initialized by every @ +(= − 1) ∙ I/? contour point, where M is the contour length, K 

is the number of landmarks, i is a random index of the starting 

contour point used to select the first landmark, with 1 ≤ @ ≤  I 

and k is the index used to refer to a selected landmark in &�, for = = 1, … , ? .  

In the end, different tracklets that are part of the same grid 

blob (object hypothesis) will be described by different 

combinations of random landmarks that are selected from the 

same blob contour. However, all the particles included into one 

tracklet will be initialized with the same fixed constellation of 

landmarks, pre-selected to describe the tracklet state.  

It has to be noted that this procedure does not guarantee that 

landmarks are always selected from the same real object. 

However, considering that multiple tracklets are spawned for 

the same object, these tracklets (including their particles) will 

“compete” against each other and, as a consequence, weaker 

tracklets and particles will be discarded in a natural way by the 

resampling steps (presented further, in the Tracklet 

Management sub-section). Additionally, new tracklet 

hypotheses, along with their newly selected anchor points, are 

always being created and initialized from the latest 

measurements, ensuring in this way different hypotheses 

adapted to the newest measurements. 

 

2) Prediction: In this step, particles are predicted at a new 

position in the grid, by considering the elapsed time, and their 

estimated state at the previous particle filter cycle. A constant 

velocity motion model is assumed, where the modeling error is 

accounted for by perturbing each propagated sample with a 

random noise component. 

 

Fig. 5. An intuitive example of predicting and weighting one particle (red). 

Top: using a particle represented as a point described by a position and 
velocity. Bottom: using a particle extended with 4 landmarks (blue ellipses). 

In both cases the particle is predicted into the same destination cell. However 

it can be seen that, in the top scenario a particle is receiving a higher weight, 
because it is confirmed by an occupied cell. In the bottom case, even if the 

particle is confirmed by the same measurement, it receives a lower weight, due 

to its landmark-to-object misalignment 
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Note that landmark prediction is done implicitly by the 

particle prediction, as the landmarks are conditioned on the 

particle state and follow the motion of the particle. 

 

3) Weighting: Every predicted sample is being assigned a 

new importance weight. This step incorporates the information 

from the measurement into the particle distribution by giving 

weights to particles, which are proportional to the likelihood of 

matching the observation.  

For a measurement L� at time t, and the predicted state from 

above M�, the measurement model consists of three components: 

a measurement cell likelihood �.L�N0M�[�]), a landmark based 

likelihood �.L�O0M�[�]), and a semantic likelihood �(L�M|M�[�]). The 

measurement cell likelihood is based on a position error, which 

is the distance between the measurement and the closest 

particle, while the landmark likelihood depends on the distance 

between the particle landmarks and the measurement contours 

representing a measure for shape alignment. Furthermore, the 

semantic likelihood is defined by a dissimilarity metric given 

the particle’s semantics.  

In the following, we will refer to these terms as weight 

factors, which contribute to the overall particle importance 

weight.  

If all three likelihood components are independent, the 

weight �[�] of the i-th particle ��[�]
 can be defined as: 

 �[�] = �P��Q��[�]R = �P��N, ��O, ��MQ��[�]R 

 = �P��NQ��[�]R�P��OQ��[�]R�P��MQ��[�]R 

We use two grids to cache computed distances for speeding 

up particle-to-measurement and landmark-to-measurement-

contour association. For computing distance grids, we apply an 

algorithm similar to [38]. One grid stores all distances to the 

closest occupied points (see Fig. 6) and the other stores all 

distances to the closest measurement contours. In addition, each 

grid cell stores the position to the closest observation. Based on 

these grids, we find �S as the distance between the i-th sample 

and the closest occupied point. Assuming a Gaussian error 

model, with a given standard deviation TU, the particle-to-

measurement weight component follows as: 

 �P��NQ��[�]R = �√WXYZ exp {− U_̂
WYZ_} 

In order to improve the stability in the presence of missed 

detections, every particle with a distance to the closest 

measurement larger than a given threshold is updated with a 

minimum default particle-to-measurement weight – a weight 

corresponding to the likelihood that a measurement was not 

observed. 

We model an object contour point likelihood given the k-th 

particle landmark as: 

 � [̀3] = �√WXYa exp {− (Ua[b])_
WYa_ } 

where �[̀3]
 represents the distance between the k-th landmark 

and its closest contour point defined by the distance map (see 

Fig. 6), and T` describes the standard deviation assigned to the 

landmark-to-contour distance noise. Assuming error 

independence between the total K landmarks, the joint factor �.L�O0M�[�]) assigned to the i-th particle can be computed 

according to: 

 �P��OQ��[�]R = ∏ �[3]23��  

As in the case of particle-to-measurement weight component, 

every landmark with a distance to the closest contour larger than 

a given threshold will be assigned a default minimum 

landmark-to-contour weight �[3]. This helps in handling 

missed detections, avoids sharp changes in the particle weight 

(zero weight in the case of wrong or no associations) and 

improves the overall algorithm stability. 

For the semantic weight, we first calculate a semantic 

dissimilarity metric between the predicted label 8� (particle 

label) and the associated measurement label 84 received from 

the closest occupied object cell:  

 �c = 1 − 
` ∙ ℎ(8S, 8e) 

where ℎ(8S, 8e) is a score function that is defined as: 

 ℎ.8S, 8e1 = fg�, 8S = 8egW, h@iℎhj 8S  9j 8e  @� kl=l9�lgm, 8S ≠  8e  

and 
` is a normalization constant: 
` = 1/(g� + gW + gm) 

having g�, gW and gm. The three score values are selected such 

that gm < gW < g�. Considering that the resulting dissimilarity 

distance �c is distorted by a Gaussian noise with a given 

standard deviation Tc, the semantic weight factor can be 

calculated according to: 

 �P��MQ��[�]R = �√WXYp exp {− Up_WYp_} 

4) Appearance and Landmark Updates: In order to update 

the particle landmarks, that are defined previously according to 

the Rao-Blackwellisation process, we use 2x2 Kalman filters 

(one per landmark). The state that is estimated by each Kalman 

filter is a 2D position. Moreover, each particle’s mass for 

Fig. 6. Example of a distance map (right), precomputed for the occupancy 

grid (left). 
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occupied 4�5,[�] and mass for free 4�6,[�]
 is updated with the 

associated measurement masses by using the Dempster-Shafer 

rule of combination, as also proposed in [4]. For simplicity, the 

semantic labels are not updated.  

 

5) Estimation: A weighted average of the particle states is 

applied to estimate both the tracklet states and the grid cell 

states. The tracklet state is estimated based on its 

corresponding particles, even if its particles are projected into 

multiple cells. However, for computing the grid cell state, all 

particles projected into the same cell are used, regardless of 

to which tracklet they belong. In practice, for a better 

processing time we directly use tracklets to get the average 

cell state. 

 

6) Resampling: We use a Stochastic Universal Resampling 

algorithm with linear complexity to resample the particles after 

normalizing particle weights for each tracklet. This algorithm 

selects a new set of particles from the previous set by taking 

their importance weights into account and thus replacing 

particles with lower weights. We also adopt a selective 

resampling strategy where the particle resampling is triggered 

only when the particle diversity is lower than a predefined 

threshold [36]. 

 

B. Tracklet Management 

Theoretically, the number of tracklets can grow above the 

available memory limits (more tracklets could be created in 

order to describe the tracked objects). While tracklets should be 

replicated and removed according to their existence probability, 

the maximum number of tracklets should be fixed within a 

predefined memory bound. Consequently, measurements need 

to be prioritized. This creates a need for a sophisticated 

management mechanism. Intuitively, a tracking mechanism 

should do the following: initialize new tracklets in new 

measurement cells; keep and replicate old tracklets by 

resampling as soon as new observations are associated; remove 

tracklets when no measurements are associated for a longer 

time interval.  

The main idea of the proposed tracklet management is that, 

at the end of every grid map particle filter iteration t the final 

tracklet list B� is composed of a subset of persistent tracklets BC,q = {*�,S[�] , �D,S[�] }����^
 and another subset of newly initialized 

tracklets r�,s = {*�,s[�] , �D,s[�] }����t : 

 BC = BC,q ∪ BC,v = {*�,S[�] , �D,S[�] }����^ ∪ {*�,s[�] , �D,s[�] }����t  
The set of persistent tracklets BC,q is obtained by resampling 

from all the surviving tracklets propagated from time i − 1 to 

time t. The list of newborn tracklets BC,v is obtained by 

sampling according to a set of initialization weights ��w��[!]
 

precomputed for each measurement cell c (see Fig. 7).   

As long as the number of tracklets does not reach maximum 

capacity, newly initialized tracklets are appended to the existing 

list. However, in cases when the maximum memory capacity is 

reached, the management mechanism ensures that, through 

sampling, the new list of tracklets will have a balanced ratio 

between newborn and persistent tracklets. In these extreme 

cases, the maximum allowed number of new tracklets is a 

parameter of the system and is setup to be less than 20% of the 

total available space in the list.  

The advanced tracklet management solution can be 

summarized into several steps.  

 

1) Compute Tracklet Occupancy Mass.  

The tracklet occupancy mass 4D(xgg) can be calculated as 

the weighted average of occupancy masses of its particles 4�5,[�]
:  

 4D(xgg) = ∑ �z [�]  ∙ 4�5,[�]�E���  

where �z [�], is the normalized particle weight. The tracklet 

occupancy mass (17) is used in the next steps to determine how 

well a measured cell c is covered by its underlying tracklets.  

  

2) Compute the cell mass-based intensity 

The cell mass-based intensity {!  of a cell c is defined as a 

sum of all its tracklet occupancy masses 4D[!](xgg). 

 {! = ∑ 4D[!](xgg)�E,|���  

where AD,! denotes the number of tracklets that fall into the cell 

c. Intuitively, the mass-based intensity can be interpreted as the 

expected number of targets in the cell c. It also provides a 

quantitative value about how well a cell is covered by tracklets. 

 

3) Compute the initialization weights 

The initialization weights ��w��[!]
 describe how likely it is that 

we have to initialize a new tracklet *�[�]
 into a given cell c. As 

these weights have to be proportional to the need of initializing 

new tracklets, we determine them for each grid cell c as: 

 ��w��[!] = }4!(xgg) − {! , 4!(xgg) > {!0 4!(xgg) < {! 

where, 4!(xgg) is the measurement occupancy mass of the cell 

c, and {!  is the mass-based intensity defined by (18). 

 

Fig. 7 Tracklet Management. 
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4) Estimating the number of new and persistent tracklets 

Suppose the system memory is limited so that the maximum 

number of tracklets that can be created is ADe�$. Additionally, 

the maximum number of newly accepted tracklets is Ase�$. Our 

goal is to calculate the new numbers for persistent A���,S and 

newborn tracklets A���,s, for the next particle filter iteration at i + 1, given the established memory limitations. 

The number of potential newborn tracklets AsS5�
 is 

determined by counting all the cells that meet the condition 4!(xgg) > {!  in (19). Without memory limitation, new 

tracklets would be initialized in all AsS5�
 grid cells. However, 

having the above defined bounds, the number of newborn 

tracklets A���,s to be used in the next particle filter cycle at time i + 1 is estimated as: 

 A���,s = min (AsS5� , max (Ase�$ , A����`�s`�)) 

In the equation above A����`�s`�  is the number of empty slots 

available for adding new tracklets, defined as: 

 A����`�s`� = ADe�$ − A�,D 

where A�,D is the total number of tracklets used in the current 

particle filter iteration. Finally, the updated number A���,S of 

persistent tracklets is calculated as: 

 A���,S = min (A�,D, ADe�$ − A���,s) 

The total number of all the tracklets at time i + 1, therefore, 

is defined as:   

 A���,D = A���,S + A���,s, where 0 < A���,D <  ADe�$
5) Tracklet sampling 

Once the number of persistent A���,S and newborn tracklets A���,s is estimated, the updated set of persistent tracklets BC��,q 

is created by selecting A���,S tracklets from {*�,S[�] , �D,S[�] }����^
 

according to their weights �D,S[�]
. However, for initializing new 

tracklets, the method consists of sampling a set of grid cell 

indices with a sampling probability proportional to their 

assigned initialization weights ��w��[!]
, where ��w��[!]

 is previously 

calculated according to (19). Finally, the sampled grid cell 

indices serve as the location to initialize new tracklets *���,s[�]
.  

As every tracklet represent an independent particle filter, it 

requires a particle-level resampling to avoid degeneracy. The 

particle-level resampling, explained in the previous section, is 

applied only after the tracklet-level management step. In 

addition, we use a selective resampling implementation to 

trigger the particle-level resampling only for a subset of 

tracklets, when their particle diversity is lower than a given 

threshold [36]. It is important to note that the resampling 

method is applied once per tracklet ID. If the same tracklet was 

replicated multiple times by the tracklet-level resampling, its 

particles will be resampled once and then copied multiple times 

in the replicated tracklets.   

V. EXPERIMENTAL RESULTS 

In order to evaluate our approach, we use multiple 

challenging sequences from real scenarios with provided 

ground truth data. The ground truth is manually annotated and 

contains different objects (e.g. dynamic and static pedestrians, 

vehicles) with various orientation, speed and position. 

For comparative results we analyze the tracking errors (see 

Fig. 8) obtained with the proposed MLPT approach and with a 

similar grid-based tracking solution – the Dempster-Shafer 

Probability Hypothesis Density tracking for Dynamic 

Occupancy Grid Maps (we will refer to it as DS-PHD) [4]. 

There are two main motivations for choosing DS-PHD as a 

reference algorithm for the comparison. First, it represents a 

well-established state-of-the art technique that addresses the 

same research problem, i.e., particle filter-based dynamic grid 

map estimation. Second, it represents an appropriate candidate 

with a similar setup (same sensors, same measurement grid 

resolution, same output interface etc.). This enables us to 

objectively assess both the proposed MLPT implementation 

and the reference DS-PHD in the same fair conditions and on 

the same ground-truth data set. 

As discussed in previous sections, there are several 

conceptual differences between the existing point-based 

particle filter estimators and the proposed MLPT approach. The 

main differences between DS-PHD and MLPT are centralized 

in table II. These conceptual differences are consistent in 

comparison with other solutions proposed in the literature [23], 

 

Fig. 8. Evaluation and parameter tuning pipeline. 

TABLE II 
COMPARISON BETWEEN DS-PHD [4] AND MLPT (PROPOSED) 

 DS-PHD  MLPT (proposed) 

Number of 

estimators  

1 particle filter 

with N particles 

(N=8 Millions)  

K filters with M particles each, 

where M ≪ N (e.g. K=128000, 

M=50) 

Algorithm 
Structure 

1 layer of 
particles 

2 layers: particles and tracklets 

Grid cell 

estimation  

Average of all 

the particles in 
the cell  

Average of all the tracklets in 

the cell 

Estimated state Position, velocity 

and occupancy 

Position, velocity, landmarks, 

occupancy, semantics 

Particle-to-cell 

regrouping  

Yes Can be ignored. Using tracklet-

to-cell mapping 

Resampling On particle level First – resampling on tracklet 
level, then resampling particles 

for selected tracklets only 
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[24], [26], [27], [29], [31]. 

Fig. 9 shows an example with the results of the proposed 

MLPT approach for a traffic scenario. The shown example 

includes consecutive snapshots sampled over a short period of 

time. The estimated dynamic world is represented as dynamic 

tracklets. The ego-vehicle is moving straight, and then is 

making a left-turning maneuver. Every snapshot presents the 

perceived world and the estimated tracklets. Every tracklet is 

represented by a speed vector and colored based on its moving 

direction.  

Fig. 10 presents a scene that includes a white vehicle 

stopping at the crosswalk and a bicyclist moving in the same 

direction along with the host vehicle. The subsequent images 

show comparative examples with the estimated tracklets (Fig. 

10.b), all weighted particles sharing the same world (Fig. 10.c), 

an example with one selected tracklet and its features (Fig. 10.d) 

and an example with the same tracklet represented by its 

weighted particles and features (Fig. 10.e).  

Fig. 11 shows a traffic light scenario, with stationary objects 

stopping at the red traffic light (see Fig. 11.a) and then 

accelerating, which is recorded approximately 9.5 seconds later 

(see Fig. 11.b). The example compares the results estimated by 

DS-PHD (see Fig. 11.a left and Fig. 11.b left) and the proposed 

MLPT (see Fig. 11.a right and Fig 11.b right). In the stationary 

case, DS-PHD shows residual velocities, especially in the larger 

object (bus), due to a higher ambiguity generated by particles 

migrating from one cell to another inside a larger and uniform 

object area (see Fig. 11.a left). MLPT reduces the residual 

 

Fig. 9. MLPT Results for a traffic scenario, including consecutive snapshots sampled over a short period of time. The ego-vehicle is moving straight, and then is 

making a left-turning maneuver.  Every snapshot includes images showing the vehicle’s surroundings in the following order: front, rear, left and right. Additionally, 

every snapshot includes the perceived world and the estimated tracklet. The occupancy and semantic grids are overlayed into one plane. Every tracklet is placed 
on top of the grid plane and colored based on its moving direction. The color value indicates the tracklet velocity vector orientation, while the saturation value is

proportional to the velocity magnitude (white for static objects).  

Fig. 10. A traffic scene showing a white vehicle stopping at the crosswalk and 
a bicyclist moving in the same direction along with the host vehicle. (a) 

Camera image. (b) Estimated dynamic tracklets for both front car and 

bicyclist. (c) The weighted particles provided by all the tracklets. Larger 
weights are illustrated by higher grayscale intensity. (d) One tracklet and its 

features, selected from the tracked bicyclist. For more clarity, the other 

tracklets are deactivated. (e) The same tracklet is illustrated by its weighted 
particles (squares)  and features (spheres). It can be seen that the particles’ 

features tend to be clustered around the estimated tracklet features in (d). 

Fig. 11. A comparison between DS-PHD and MLPT (proposed) for a traffic 

light intersection use-case. Top: camera images from the traffic scene. Bottom: 
a region of interest extracted from the estimated dynamic grid (top view). (a). 

All vehicles are being stopped at the red light. (b) All the vehicles are 

accelerating (approximately 9.5 seconds later). The estimations are 
represented as a velocity vector field. Each velocity vector is attached to a 

dynamic grid cell. A vector color encodes the moving object orientation, while 

its saturation and length is direct proportional to the velocity magnitude (white 

is used for stationary vehicles).  
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velocities by using landmarks to stabilize the particle-to-

measurement matching (see Fig. 11.a right). As illustrated in 

the Fig. 11.b right, particle “anchor” points also improve the 

estimation of dynamic cells, especially in the middle of larger 

objects, as opposed to simple particles (without landmarks) that 

tend to provide reliable velocity vectors only in front of the 

accelerating bus (see Fig.11b left). Subsequently this leads to 

an improved algorithm convergence, as illustrated in Fig. 15, 

right (the comparison between the velocity graphs estimated for 

an accelerating object).  

However, one has to note that estimated grid velocities can 

still be temporarily biased, especially when the tracked objects 

are close to each other. For example, Fig. 12 shows a traffic 

scene situation with a pedestrian crossing in front of the ego 

vehicle from left to right. The dynamic grid result illustrates the 

crossing pedestrian (green arrows). Additionally, the estimated 

grid includes the projection of two adjacent cars represented by 

white dots (white arrows which appear as dots due to the zero 

velocity of the two stationary vehicles). As soon as the crossing 

pedestrian passes in front of the right vehicle, some of 

pedestrian’s velocity vectors are biased towards the stationary 

car. This is explained by the fact that some of the dynamic 

particles, including their anchor points are incorrectly 

associated to the measurements corresponding to the stationary 

vehicle. Although these particles are described by a lower 

weight and, subsequently, are more likely to be removed by the 

resampling mechanism, they still might lead to temporarily 

inaccurate estimated tracklets.  

A. Parameter Tuning and Error Model Estimation 

 To perform a quantitative evaluation of both approaches, we 

introduce a parameter tuning framework (see Fig. 8) that 

determines the optimal parameter values for the given tracking 

algorithms. The proposed parameter tuning framework 

executes the given algorithm multiple times on the same 

reference sequence with a different combination of tuning 

parameters. The reference sequence describes a real traffic 

scenario and includes manually annotated ground truth objects. 

Each ground truth object is represented by a box and includes 

object semantics (vehicle, pedestrian, etc.), position, velocity 

and size.  

There are two goals we hope to achieve through evaluation. 

One goal is to see how the accuracy metrics are evolving based 

on different tuning parameters. Another goal is to find the best 

combination of the tuning parameters that provide the highest 

estimation accuracy. The tuning parameters used were: 

standard deviation for matching features; occupancy mass 

decay factor (persistence probability) when no measurements 

are associated to particles; velocity process noise (standard 

deviation of the velocity noise); process noise for initializing 

new particles (standard deviation used to sample the 

initialization velocity). The permutations of tuning parameters 

are predetermined by either uniformly sampling from a domain 

of values or manually selecting from desired values. At each 

iteration, the evaluation process runs on the same ground truth 

sequence but with different instances of tuning parameters. 

Every permutation of tuning parameters is then stored as a 

separate instance.   

The framework computes respective metrics for each 

iteration such as the sequence mean absolute error (MAE), root 

mean squared error (RMSE) and the standard deviation 

(StdDev) for speed and distance estimation. Our goal is to find 

a model which describes this error in the continuous space as a 

linear function of tuning parameters with the subset of discrete 

error values. To find this error model, we use a linear 

regression, where tuning parameters (features) estimate 

velocity mean absolute error �� � ℝ (target values). The error 

model is approximated by a quadratic polynomial function �: ℝw → ℝ defined as:  

�� = �(��, ��, … , �w) 

 =  ��  + ����W + ⋯ +  �w���wW + �w�W�� + ⋯ + �Ww�W�w,  (24) 

Fig. 12. A traffic scene showing a pedestrian crossing in front of the ego 

vehicle from left to right. Top: image snapshots from the corresponding traffic 
scene. Bottom: A part of estimated dynamic grid in the proximity of the ego-

vehicle (top-view). The dynamic grid result shows a crossing pedestrian (green 

arrows). Additionally, the estimated grid includes the projection of two 
adjacent cars represented with white dots (not visible in the top camera 

images). The ego vehicle, as well as the other two left and right cars are 

stopped at the traffic light. It can be seen that as soon as the crossing pedestrian 
passes closer to the static obstacle (in front of the right vehicle), some of the   

pedestrian velocity vectors are temporarily biased by the wrong associated 

measurements belonging to stationary vehicle.  

 

Fig. 13. Estimated Error Model. The examples show how the Velocity MAE is varying depending on different tuning parameters such as: StdDev of longitudinal 

velocity vs. StdDev of initial particle velocity (left), StdDev of initial particle velocity vs. StdDev of measurement featrues (middle) vs Persistence Probability.   
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where ��, … , �Ww�W � ℝ are the coefficients of the polynomial 

determined by the linear regression, ��, … , �w � ℝ are the tuning 

parameters, and l is the number of tuning parameters. 

From (24), the optimal tuning parameters correspond to those 

arguments ��, … , �w for which the error �� function is minimum. 

The same parameter tuning procedure was applied for both DS-

PHD and the proposed MLPT solution.  

Fig. 13 shows the estimated error model in the case of the 

MLPT algorithm. It can be observed how the velocity error 

surface is changing depending on different parameter 

combinations and parameter values.   

Fig. 14 illustrates similar example with the error model in 

case of DS-PHD. Specifically, the picture shows how the Mean 

Absolute Velocity (MAE) error is varying with respect to 

different distributions to initialize new particles (left), or with 

respect to selected process noise (in this case velocity standard 

deviation) that is used in the particle prediction. In both charts 

we show the initially selected tuning parameters and the best 

tuning parameters, estimated after analyzing the evaluation 

results over different combinations of parameters.  

 

B. Evaluation with provided ground truth data 

The main objective of this phase was to evaluate both 

particle-filter grid map tracking solutions by using the ground 

truth sequences.  

Fig. 15 presents a comparison between the estimated velocity 

for MLPT and DS-PHD in a scenario with manually annotated 

targets. The evaluation was done only on specific selected 

objects, in order to see how the estimated velocity of a given 

target is evolving in time. The left image shows the bounding 

boxes provided by the ground truth and the estimation result of 

MLPT. The other two images present the result of the velocity 

estimation of both algorithms (MLPT: blue, DS-PHD: orange) 

compared to the ground truth velocity (green). The example 

graphs correspond to an almost stationary pedestrian (central 

image) and an accelerating car (right image). As previously 

described in the Fig. 11, it can be seen that MLPT converges 

faster and closer to the ground truth value. However, it also 

 

Fig. 15. Evaluating the MLPT and DS-PHD on individual objects from the ground truth sequence (left image). Each individual diagram represents the estated 

velocity for one single ground truth object (green line). The MLPT results is shown with blue. The DS-PHD estimation is illustrated with yellow line. 

TABLE III 
QUANTITATIVE RESULTS DS-PHD [4] AND MLPT (PROPOSED) 

 DS-PHD MLPT (proposed) 

Number of particles 8M particles 10K tracklets, 
50 particles/tracklet 

10K tracklets, 
128 particles/tracklet 

Metric  MAE StdDev MAE StdDev MAE StdDev 

With the tuning parameters used before optimal parameter tuning 

Velocity 0.82 0.94 0.67 0.53 0.56 0.35 

Distance 0.38 0.02 0.46 0.02 0.47 0.016 

With the best tuning parameters 

Velocity 0.65 0.51 0.546 0.42 0.474 0.788 

Distance 0.38 0.02 0.24 0.02 0.46 0.02 

 

Fig. 14. DS-PHD [4] Tuning Parameters vs. Estimated Velocity Error. Left: 

the picture shows how the Mean Absolute Velocity (MAE) error is varying 

when selecting different distributions to initialize new particles. Right: the plot 
shows how the same velocity error is changing with respect to selected process 

noise (in this case velocity standard deviation) that is used in the particle 

prediction. In both figures we show the initially selected tuning parameters 
and the best tuning parameters, estimated after analyzing the evaluation results 

over different combinations of parameters. 
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shows that MLPT is described by a higher estimation variance 

than DS-PHD.  

 

Table III centralizes the mean absolute error (MAE) and 

standard deviation (StdDev) for the velocity and distance 

estimation using the two methods. The error metrics are 

calculated for the entire sequence by considering all the 

estimated objects. For MLPT we performed two different 

evaluations – with 50 particles per tracklet, and 128 particles 

per tracklet. Moreover, for both algorithms we include an 

evaluation based on initially tuning parameters, and another 

evaluation based on the best tuning parameters. Consequently, 

MLPT provides more accurate estimation with slightly higher 

variances in some cases. 

Table IV compares both algorithms’ accuracy by calculating 

the Mean Absolute Percentage Error (MAPE) for the estimated 

object velocity. The estimation accuracy was calculated for 

three different velocity ranges: 1 – 3 m/s, 3 – 7 m/s and above 

7 m/s. It can be observed that the obtained percentage errors are 

higher for targets moving at lower velocities (1-3 m/s). This is 

due to the normalization of the estimated velocity by a lower 

ground truth velocity. In case of the velocity ranges 1 – 3 m/s 

and 3 – 7 m/s MLPT provides a higher accuracy than DS-PHD. 

At higher object velocities (> 7 m/s) DS-PHD achieves better 

results. The better performance of MLPT at low speeds (like 

traffic light intersection scenarios) where accelerating and 

decelerating objects are more frequent, can be explained by the 

faster convergence towards the ground truth value. 

C. Processing time on a GPU implementation 

 Key steps in the inner-loop of the proposed algorithm were 

partially optimized in CUDA; other steps such as the use of 

distance transform to generate intermediate data structures that 

speed up associating features to measurement and the 

management of tracklets were left on the CPU. These steps are 

still un-optimized and are still an area of active research from 

the point of view of functionality in relation to the proposed 

algorithm and of implementation techniques for optimal 

performance. Fig. 16 shows the performance for a 

parametrization of 128K tracklets, 128 particles per tracklet and 

3 features per particle. The size of the measurement grids is 

1232x1232 cells, where each cell covers a 0.13x0.13 m region. 

The algorithm is executed on a Nvidia 1080Ti GPU platform. 

The graphs presented in Fig.16 are summed up durations in 

milliseconds of the operations on GPU for predicting particles 

using linear motion (4.2ms), associating features to 

measurements (7.8ms), weighting particles (3.9ms) and 

estimating the state of the tracklets (3.9ms). The total average 

duration of all steps is 19.9ms.     

VI. CONCLUSIONS 

In this paper we presented a novel particle filter solution and 

introduced important concepts to track dynamic grid maps. The 

main motivation of the work was to address existing challenges 

in the field of grid map estimation and object tracking, in 

general. The problem of combining various sensor 

measurements was addressed by a multi-layer particle filter-

based tracking approach (MLPT). Information like occupancy, 

object semantics, or shape was used to estimate the object state 

via Bayesian update mechanisms. Instead of using one particle 

filter for estimating the entire grid, we employ multiple 

individual particle filters, organized into tracklets that share the 

same world. By having tracklets in place, various particle filter-

related steps like initialization or sampling were performed at 

the tracklet step. This offered the advantage of working in 

batches of particles instead of iterating over every single 

particle. Another important concept was “self-localizing” 

tracklets. Like simultaneous localization and mapping 

approaches, in our tracking solution every particle state is 

extended with a small set of landmarks that are randomly 

selected from the object contour. Intuitively, this idea was 

adopted in order to decrease the effect of “drifting” tracklets 

and, consequently, to obtain a more precise velocity estimation. 

Although this work aimed to provide a more stable 

environment estimation by using “anchored” tracklets and 

particles via landmarks, further work can address better method 

variants to detect, select and manage these landmarks as well as 

to reduce the ghost velocities by using, for example, static map 

information, similarly to [27]. 

The experimental results with the ground-truth data illustrate 

that MLPT can estimate the dynamic world with a higher 

accuracy than previous methods. Although having richer 

particles contributes to more accurate results and a more 

comprehensive understanding of the world, this comes at a cost 

of having more complex structures and intermediate data 

representations. Incorporating additional features as part of the 

particle is a new topic that requires more focus in future 

research.  

TABLE IV 
COMPARISON BETWEEN DS-PHD [4] AND MLPT (PROPOSED) 

BY USING MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) 

Velocity Range 1-3 m/s  3-7 m/s > 7 m/s 

DS-PHD  21.05 % 14.9 % 10.3 % 

MLPT 
(proposed) 

20.1 % 14.6 % 11.6 % 

 

Fig. 16. Performance of the main steps of the MLPT algorithm. 
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