
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—One of the indispensable functions of a self-driving

vehicle is to estimate its dynamic world, which includes various

traffic participants within complex driving scenarios. The

estimation mechanism has to be flexible, fast and robust. However,

achieving these requirements is still challenging. Dynamic grid

maps are one of the possible ways to combine and estimate the

multi-sensory information at an intermediate level. In this paper

we present a particle filter-based grid map estimation which

addresses several challenges. First, we propose multi-layer particle

filter-based tracking solution (MLPT) that uses two measurement

grid channels as input: an occupancy grid and a semantic grid.

Second, we introduce the concept of structuring the particle

population into batches, where each batch represents an

individual tracklet. Rather than using one particle filter for

estimating the entire grid, we employ multiple individual particle

filters (tracklets) that share the same world. Third, a concept of

“self-localizing” tracklets is presented. Similar to simultaneous

localization and mapping approaches, in our tracking solution

every particle state is extended with a small set of landmarks. This

allows a tracklet to “self-localize” itself with respect to tracked

object boundary and leads to a more precise velocity estimation.

Finally, we introduce an advanced tracklet management

mechanism that allows executing some specific particle filter

operations at the tracklet level. This optimization provides

multiple advantages. Experimental results with ground-truth data

show improvement in the estimation accuracy in comparison to

similar techniques.

Index Terms—Particle Filter, Grid Map, Tracklets,

Autonomous Driving, Object Tracking, Self-Localizing Tracklets.

I. INTRODUCTION

NE of the key requirements of an autonomous vehicle is

the ability to accurately perceive the environment along

with its complex infrastructure. The process of acquiring

knowledge about a vehicle’s surrounding world is a basic

prerequisite for advanced automated driving functions,

including collision avoidance, path planning and motion

control. To reliably model the environment, an estimation

system must address the following challenges: support large

amounts of varying measurements from different perception

subsystems; decouple dependence on specific sensor

Manuscript received May 15, 2019; revised February 2, 2020.

configurations; synchronize and filter input measurement data;

detect and track critical traffic participants within an

autonomous vehicle’s drivable field-of-view.

In order to obtain a consistent representation in various

complex scenes, obstacle detection and tracking algorithms rely

on information acquired from different sensors such as radars

(for directly estimating the object motion [3]), LiDAR (for a

more precise obstacle position and shape [5], [6], [7]), and

vision (for acquiring both range and semantic information [8],

[9], [10]). Moreover, to generate a deeper understanding of the

world, existing architectures rely on combinations of sensors to

offset the shortcomings of individual sensor modalities [10],

[11], [12].

Various techniques for modeling and tracking traffic

participants have been proposed over the past years [1], [2].

Existing approaches can be divided into two main abstraction

levels. Higher level abstraction methods focus on object-level

processing. In most solutions, the objects are represented by

simple and intuitive models such as boxes [13] or L-shapes [5].

In order to increase the robustness, various techniques try to

include models with adaptive geometry such as boxes with

The authors are with Mercedes-Benz Research and Development North
America, Autonomous Driving Department. Address: 309 N Pastoria Ave.,

Sunnyvale, CA 94085, USA (e-mail: andrei.vatavu@daimler.com).

From Particles to Self-Localizing Tracklets: a

Multi-Layer Particle Filter based Estimation for

Dynamic Grid Maps

Andrei Vatavu, Member, IEEE, Melissa Rahm, Suresh Govindachar, Gunther Krehl,

Abhishek Mantha, Sagar Ravi Bhavsar, Manuel Schier, Janis Peukert, and Michael Maile

O

Fig. 1. Multi-Layer Particle Filter based Tracking (MLPT) for Dynamic Grid
Maps. Top left and right images illustrate a snapshot from the traffic scene,

provided by vehicle documentation cameras. The result of estimating dynamic

objects is represented as a set of tracklets (visible as speed vectors in the
image). The tracklet colors describe moving direction of the target objects. The

color saturation encodes the velocity magnitude (white is for stationary

objects).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

variable size [6], parametrized curves [14], deforming polygons

[15], [16], rigid objects described by point sets [18], voxels

[19]. However, object-level processing comes with its own

limitations. As more sensors contribute to perceive the same

world or when input measurements become noisy and cluttered,

common functions, such as object-level data association,

matching and grouping, require additional approaches to deal

with issues like incorrectly grouped targets or inaccurate state

parameter estimations. Therefore, in order to overcome these

object-level challenges and reduce computational complexity,

many solutions focus on modeling the dynamic world at a lower

level of abstraction such as the ones described in [8],[18].

A well-known technique that has been used for lower level

representation and tracking is grid-mapping. In a grid map, the

surrounding space is tessellated into rectangular grid cells. Each

cell is an independent building block of the space that stores

properties like occupancy probability [20]. The traditional

approaches incrementally update the cell occupancy values,

assuming that the surrounding environment is static.

Additional approaches take advantage of the temporal

inconsistencies between occupied and free space. For example,

in [21], an object is labeled as “moving” if its location was

previously sensed as free space. Other approaches explicitly

consider the uncertainties to build the dynamic map of the

environment. In [22] a Bayesian Occupancy Filter is proposed,

where each grid cell state is represented by its occupancy and

2D velocity components.

More recent approaches propose different dynamic grid map

estimation variants based on particle filters [4], [23], [25], [27],

[29], [30], [31]. The grid cell state is approximated by a set of

samples. Particles are not associated permanently to one grid

cell state but are propagated according to their own motion

model and, subsequently, are reassigned to new destination

cells. Then, all particles receive a weight proportional to the

occupancy belief of the new destination cell. When the new

target cells are sensed to be occupied, higher weights are

assigned to those particles. In general, a particle predicted in the

middle of a larger object can be assigned to any of the occupied

cells and still be rewarded with a high weight. In other words,

the particles receive their weights without being aware of their

own position with respect to the tracked object hypothesis. This

results in higher uncertainties and slower algorithm

convergence (see Fig. 5, top). In order to improve the estimation

accuracy, especially for larger objects, we would need to

employ extra features from various sensors or increase the

number of particles. Therefore, a new challenge arises: what is

the best way to incorporate more knowledge about the

surrounding world in the particle state, increase the system

flexibility, and keep a fixed memory space for each particle?

Starting from our previous work, presented in [17], we

address the above described problems and present four concepts

to improve the particle filter-based grid map estimation.

 The first concept treats the dynamic grid-map estimation as

a multi-channel measurement processing. We propose a Multi-

Layer Particle Filter based Tracking solution (MLPT) that uses

two evidence grids as input: an occupancy grid map channel,

which contains the occupancy belief for each individual cell,

and a semantic grid map channel, in which every grid cell is

described by the most likely object class label.

The second concept adopts the idea of structuring the entire

particle cloud into smaller independent batches of particles,

where each batch represents an independent density. We refer

to this batch of particles as a tracklet (see. Fig. 1). Instead of

using one particle filter for estimating the entire grid, we

employ multiple individual particle filters (tracklets) that share

the same grid world and describe the state of individual object

parts. Although particles from different tracklets can travel

between different cells and share the same measurement

information, they are linked to their own uniquely identified

group (i.e. tracklet).

The third concept introduces tracklets that can “self-localize”

themselves with respect to tracked object boundary, by

extending the particle state with additional knowledge of the

object shape. Like simultaneous localization and mapping

approaches such as FastSLAM [32], in the proposed tracking

solution, every particle model is extended with a small set of

landmarks that are randomly selected from the object contour

(see Fig. 4). Subsequently, the “anchored” particles contribute

to a more precise tracklet state estimation (see an intuitive

illustration in Fig. 5, bottom).

Finally, the last concept describes an advanced tracklet

management mechanism. Operations such as resampling,

initialization and removal are moved to the tracklet level. On

the one hand, this allows iterating over a fewer number of

tracklets. On the other hand, some processing steps are done in

batches by manipulating individual subsets of particles

belonging to one single tracklet. Specifically, we adopt a faster,

two-level sampling mechanism, including both tracklet and

particle levels. A priority-based mechanism is used to sample

new tracklets from the measurement space, in order to keep the

number of tracklets bounded.

The above proposed concepts provide the following

advantages:

• Less memory consumption: Common grid cell properties

(e.g. semantic label, object ID etc.) can be stored at the

tracklet level instead being explicitly replicated at the

particle level.

• Faster processing: Tracking operations (creation, deletion or

update) work on groups of particles at the tracklet level

instead of processing each single particle individually.

• Increased accuracy: Because each particle is “anchored” to

a fixed sub-set of contour features, we obtain a decreased

effect of “drifting” tracklets and, consequently, more precise

velocity estimation, especially in the case of large objects

described by uniform occupancy values.

• Improved robustness: Having individual particle filters can

help in the cases when only some parts of the grid map

receive new measurements. Only the tracklets that are

associated to those specific measurement cells can be

selectively updated, instead of processing the entire

population of particles.

• Increased flexibility: Having data organized in batches can

facilitate the development on parallel hardware

architectures.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

The rest of the paper is structured as follows. The next

section gives an overview of existing grid-based particle filter

solutions. Section III describes the overall system processing

flow, the concepts of self-localizing tracklets and multi-channel

grid map estimation. The MLPT algorithm and its main steps

including the tracklet estimation and tracklet management are

described in Section IV. Section V presents the experimental

results, followed by the conclusions in Section VI.

II. RELATED WORK

This section presents an overview of existing grid-based

particle filter solutions, provides a comparison and points out

the limitations.

A first grid-based particle filter solution is introduced by

Danescu et. Al, in [23]. The entire dynamic grid is represented

by a population of particles. Each particle represents an

individual hypothesis which can move from cell to cell. The

particle state is defined by position and speed and is predicted

across the grid depending on its motion model and motion

parameters. Particles are directly associated to grid cells based

on their position and thus contribute to the grid cell’s occupancy

and velocity distribution. The occupancy probability is

described by the number of particles in that cell. The

measurement data used in [23] is a raw obstacle grid obtained

by processing the stereovision-generated elevation map.

 Another grid-based particle filter solution is described in [4],

where the dynamic grid map estimation is formulated as a

Random Finite Set problem. Techniques from the field of finite

set statistics like the hypothesis density filter (PHD) and the

Bernoulli filter (BF) are applied to estimate the dynamic state

of grid cells. The Dempster-Shafer theory of evidence (DS) is

then used to update the occupancy state of a dynamic cell. The

used measurement data is obtained by laser and radar sensors.

While solutions proposed in [4] and [23] uniformly estimate the

full space including both static and dynamic components, other

approaches focus on estimating static and dynamic parts

separately [24], [25], [26], [27]. In [24] and [27] the particles

are only associated to dynamic fields. The static infrastructure

is derived by a traditional occupancy grid update mechanism.

Therefore, in [24] a new representation of the Bayesian

Occupancy filter (BOF) is used. Alternatively, in [25] and [26]

the world model is represented by two distinct sets of particles,

i.e., static (particles with zero velocity) and dynamic. In [27],

the static and dynamic occupancies are directly updated by the

map. The authors use dynamic particles only to estimate cell

velocity distributions and to predict the dynamic occupancy

evidence of the map. The input measurements are provided by

laser scanners and short-range radar sensors.

In [29], [30] and [31] the particle state is extended to

incorporate multiple observation cues and adopt various

heuristics to improve data association and processing time.

Depending on the architecture, world model and sensor setup,

the most recent algorithms enrich the particle state with

additional properties like object heights [29], grayscale

intensities [29], [30], patches [30], and object IDs [28], [31].

For example, in [29], the particle state is extended with a new

dimension, the height. The authors in [30] use two grid maps –

an intensity grid and an occupancy grid. The two grids are used

to extract a set of 3x3 rectangular patches. To estimate the state

of these patches, a Rao-Blackwellised solution is used, where

each particle incorporates the intensity and occupancy

information and receives a weight based on how well the

particle patch matches the extracted measurement. Although

the patch-based approach can include the extra appearance

TABLE I
COMPARISON OF GRID-BASED PARTICLE FILTER SOLUTIONS

Grid-based Particle Filter

(PF) variants
Sensors Occupancy cell estimation Estimated result

[23] Particles for estimating static

and dynamic cells

Stereo-vision sensor Number of particles in the cell Particle-based occupancy grid

[4] Particles for estimating static
and dynamic cells

LiDAR and radar sensors Dempster-Shafer theory of evidence Dynamic occupancy grid

[24] Particles for estimating

dynamic cells only

LiDAR sensor Extended Bayesian occupancy filter Dynamic Occupancy grid

[25] Particles for estimating static

and dynamic cells

LiDAR and radar sensors Dempster-Shafer theory of evidence Dynamic occupancy grid

[26] Particle population is
divided into subsets of static

and dynamic particles

Multi-layer laser scanners and
short-range radar sensors

Dempster-Shafer theory of evidence Evidential dynamic occupancy
grids

[27] Particles for estimating
dynamic cells only

Laser scanners and short-range
radar sensors

Dempster-Shafer theory of evidence Evidential occupancy grid with
radial velocity

[29] Particles for estimating static

and dynamic cells

Stereo-vision sensor Ratio between the number of particles

having a height > T and the total
number of particles in the cell

Particle-based dynamic elevation

map

[30] Multiple Rao-Blackwellised

particle filters for estimating
static and dynamic cells

Stereo-vision sensor Binary Bayes Filter for every particle Dynamic occupancy grid with

grayscale intensity information

Proposed

Solution

Multiple individual Rao-

Blackwellised particle filters
(up to 128000) – self-

localizing tracklets

LiDAR, stereo-vision, radar Dempster-Shafer theory of evidence at

the particle level

Dynamic occupancy grid and

tracklets

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

information, it is limited only to the close neighborhood around

a particle and its complexity increases for larger blocks.

Table I summarizes the characteristics of existing particle

filter based methods for estimating dynamic grids, including the

proposed solution.

In summary, existing grid-based particle filters are promising

but come with two limitations. The first limitation is that most

solutions use one population (one multi-modal probability

density) of particles to estimate the state of multiple grid cells

that are considered independent (one cell is described by its own

probability density). A particle can migrate from one cell to

another cell, becoming decoupled from its previous source cell

density and reassigned to a new destination cell density.

Because particles are regrouped into new independent cell

estimators at each iteration, the identity of the tracked cell is

lost. However, this information can be retained if additional

heuristics are used. In other words, the particles can identify the

existence of an object, in general, but not the existence of a

“particular” object part or cell. In order to improve estimation

and data association, the authors in [28], [31] adopt the idea of

linking particles to objects by extending them with object IDs.

It is important to note that the proposed methods still ignore the

cell identities and must remap every particle to every cell.

The second limitation in grid-based particle filters is that the

estimation of cells belonging to large and uniform grid areas are

usually described by higher uncertainty and lower accuracy. For

example, a particle that is predicted in the middle of a larger

object can be attached to any of its occupied cells. This could

lead to ambiguous data association and, in the end, higher

uncertainties. In order to improve the estimation accuracy for

uniform grid areas (i.e. in the middle of large objects with the

same occupancy values), extra features from various sensors,

larger patches, or more particles would be needed.

In the following we present our proposed MLPT solution,

which is designed to overcome the above discussed limitations.

III. SYSTEM OVERVIEW

This section presents an overview of the overall estimation

system and highlights its primary subcomponents as shown in

Fig. 2. The processing pipeline can be divided into three main

steps. In the first step, raw sensor data is acquired by each

sensor interface, preprocessed, and transformed into compact,

medium-level data structures. In addition to measurement

values, each sensor is described by its own measurement model.

Lidar point clouds and stereo vision images are both

transformed into a more compact Stixel-based representation.

The Stixel is a convenient way to model the surrounding

environment as vertically oriented rectangles that can

incorporate properties like position, depth, size and semantic

information of individual object parts [8], [9]. Unlike lidar and

vision Stixels, the radar locations are compressed to a set of pre-

filtered target points, which include the Cartesian position and

velocity. More details about radar sensors and its data

representation is presented in [33].

In the second step of the processing pipeline, compact sensor

measurements are integrated into separate evidence grid

channels. A channel can be defined as an independent 2D grid

representation that accumulates a group of sensor observations,

from one or multiple sensors. In this work, two measurement

grid channels are computed – an occupancy grid channel and a

semantic grid channel. However, it must be noted that the

proposed method can be easily extended with additional grid

channels using gradients or height properties.

The measurement occupancy grid channel is computed by

accumulating the range measurements from all available

sensors during a given fixed time interval. New measurements

are then integrated into the occupancy grid by using the

Dempster-Shafer theory of evidence. Thus, each cell is

described by a belief mass of occupied, free or unknown, and

can be converted into a conventional occupancy probability by

using the pignistic transformation. More details about

Fig. 2. System Overview.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

measurement occupancy grid calculation is presented in [4].

The measurement semantic grid channel combines the

semantic information provided by both the Stixel world and the

classified radar targets [33]. Every projected object label

identifies a given object class (e.g. pedestrian, bicycle, vehicle

etc.) and has an associated confidence score [9]. Due to memory

constraints, after integrating labels into the semantic channel,

we keep only the top K object labels per cell, based on their

highest accumulated scores, instead of storing a full histogram

of all the accumulated labels per cell.

It is important to note that both measurement grid channels

are described by the same size and resolution. Also, both

channels are aligned in time (the same time interval is used to

integrate input measurements) and space (a given area in world

coordinates is projected into the same cell indices in both grids).

The proposed hybrid particle filter-based estimator is the last

step of the processing pipeline and is described in the following

sections.

IV. DYNAMIC GRID MAP ESTIMATION CONCEPTS

 The primary objective of the tracking problem is to estimate

the target’s current state �� from a set of noisy observations ��:�
received up to a given time t. The tracking problem can be

formulated as a recursive Bayesian estimation process to

estimate the posterior probability distribution �(��|��:�), by

using the probabilistic motion model �(��|����) of the target

and a defined measurement model �(��|��):

�(��|��:�) =
�(��|��) � �(��|����)�(����|��:���)����� 

where
 denotes the normalization constant.

A possible implementation of the Bayes filter update rule

described in (1) can be realized by using a particle filter-based

estimator. In a particle filter algorithm, at each moment in time

t, the posterior probability distribution �(��|��:�) is

approximated by a set of N individual particles {〈��[�], ��[�]〉}���..�, where each particle ��[�]
 represents a

hypothesis of the tracked state �� and has an assigned weight

��[�]
 according to how well the particle matches the

observations.

In general, standard particle filters can be used for solving

various estimation problems described by non-linear motion

models or non-linear measurement processes. Although particle

filters are relatively simple to implement, they are not suitable

for estimating larger states. This limitation comes from the fact

that the number of particles required to approximate the object

state tends to scale exponentially once more parameters are

incorporated into the state ��.
As described in applications like object tracking [6], [16],

[30] or simultaneous localization and mapping [32], a Rao-

Blackwellised particle filter (RBPF) is applied as a common

approach to estimate larger states [34]. The main idea of a

RBPF algorithm is to draw samples only from a part of the state

(e.g. object position and velocity), while the other state

parameters are just carried with particles and are estimated

analytically by using, for example, Binary Bayes filters,

Dempster Shaffer-based updates, or Kalman Filters (one per

particle). In this work we use the same idea of Rao-

Blackwellisation to be able to handle “richer” particles. The

tracking problem is therefore modeled as two decoupled

recursive Bayesian estimations which, in the end, are combined

into one single estimator. The two estimation parts are self-

localizing tracklets and multi-channel grid estimation.

A. Self-localizing tracklets

The main idea of the following proposed concept is to

improve the particle weighting by extending its state with

additional knowledge about object shape. We assume that a

given dynamic grid cell c is part of a larger object hypothesis.

Therefore, apart from its position (! , "!) and velocity (#$,! , #%,!), a dynamic grid cell c is also described by its relative

position to K object landmarks & = {'�, … , ')}. These

landmarks are initialized by selecting a random set of K points

from the same object contour (see Fig. 4). It must be noted that,

in order to take into account, the change in the object geometry,

the relative distances from cells to their selected landmarks

must also be recursively updated, at each measurement

Fig. 3. Particles, tracklets and objects that share the same world. The particles

are grouped into tracklets. Every tracklet state is updated with an individual
particle filter, by employing its own particles. For persentation simplicity, the

particle features are not included here, but are presented in the next

image.Subsequent tasks like object clustering, can be performed by using the

multiple estimated tracklets.

Fig. 4. Particle model. In the example the particle is created for an L-shape
object (gray blob). The particle model is described by its position (x.y) and

four reference object landmarks (blue). The landmarks are selected form the

object contour (light gray). The ellipses represent the landmark covariances.
Although the example presents only one particle assigned to agiven cell (red),

similar particles are initialized in multiple locations, covering the entire object.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

iteration.

For every newly measured grid cell we create a fixed set of

N particles. This group of particles will represent an individual

particle filter-based estimator – a tracklet *� (see Fig. 3).

Therefore, instead of maintaining and updating one larger set of

particles for the whole grid, we use multiple, smaller,

independent populations of particles organized into tracklets,
(see Fig. 3). A tracklet position and velocity at time t is denoted

by +� = [� , "� , #$,� , #%,�],. Additionally, the tracklet state is

extended by a unique set &� of K random landmarks selected

from the same object contour. The tracking problem can be

formulated probabilistically as estimating the following joint

posterior distribution:

 �(+�, &�|��:�) 

 As in FastSLAM methods [32], tracklet state estimation can

be implemented with a Rao-Blackwellised particle filter [34].

Thus, the joint posterior (2) is factored into independent

estimators as:

 �(+�, &�|��:�) = �(+�|��:�)�(&�|+�, ��:�) 

 = �(+�|��:�) ∏ �.'�,/0+�, ��:�123��  

The first distribution �(+�|��:�) in (3) describes the tracklet

position and velocity and is represented by a set of particles.

The remaining factors �.'�,/0+�, ��:�1 are the landmark

posterior distributions, which can be marginalized out

analytically, i.e. every particle carries with it K Gaussian

distributions (one per landmark) which are updated with

Kalman Filters [35].

The main motivation of extending the tracklet state with a

fixed set of randomly selected features is the need to improve

the particle-to-measurement matching (see Fig. 4), through a set

of “anchor” points. Intuitively, this leads to an improved

stability in positioning tracklets with respect to a rigid object

shape, therefore in fewer “drifting” tracklets (see Fig. 5). By

making the analogy with the existing SLAM approaches, it also

can be said that the presented tracklets are able to self-localize

themselves with respect to the object boundary. By

incorporating object feature information as part of particle state,

a link between low-level particle world and high-level object

world is created.

B. Multi-channel grid estimation

 Multi-channel grid estimation involves integrating the

measurement information structured into two grid channels: an

occupancy grid and a semantic grid.

Similar to the previous section, for every newly measured

grid cell, at time t, we define a tracklet as an independent

particle filter-based estimator. Besides its dynamic properties +�, every tracklet is represented by an appearance vector At,

which combines the raw sensor data of the occupancy and

semantic channels. The appearance vector At is thus completely

described by a belief mass for occupied 4�5, a belief mass for

free 4�6 , and a semantic label lt:

 7� = [4�5, 4�6 , 8�], 

In the context of Dempster-Shafer theory of evidence, both

masses of occupied 4�5 and free 4�6 can be converted into a

conventional occupancy probability �(9�) by using the

pignistic transformation [37]. Thus, similarly to (3), the tracklet

state estimation is described by a joint estimation problem of its

motion +� and appearance 7� and can be written in a factored

form as:

 �(+�, 7�|��:�) = �(+�|��:�)�(7�|+�, ��:�) 

 = �(+�|��:�)�(9�|+�, ��:�)�(8�|+�, ��:�) 

where �(+�|��:�) represents the posterior over tracklet position

and velocity +�, �(9�|+�, ��:�), and �(8�|+�, ��:�) are tracklet

occupancy and semantic label posteriors that are conditioned on

its motion +�.
C. Combining the two problems into one estimator

The two decoupled problems described in the previous

section can be combined into one estimator. Therefore, we can

say that a dynamic tracklet *� is fully described by its dynamic

properties +�, appearance 7� and a set of object landmarks &�,
i.e., *� = {+�, 7�, &�}. Consequently, the two update equations

(3) and (5) can be written as a single estimator as:

 �(*�|��:�) = �(+�, 7�, &�|��:�) 

 = �(+�|��:�) �(9�|+�, ��:�) 

 �(8�|+�, ��:�) ∏ �.'�,/0+�, ��:�123��  

 To approximate this posterior, we initialize for each

occupied cell a tracklet *� that is described by its position,

speed, landmarks and appearance components. The full

posterior density �(*�|��:�) of the tracklet *� at time t is

represented by a set of N weighted particles:

 {+�[�], :�[�], 8�[�], ('�,�[�] , Σ�,�[�]) … , ('�,)[�] , Σ�,2[�]), ��[�]}����  7

where +�[�]
 represents the position and velocity of a particle, :�[�] = [4�5,[�], 4�6,[�]]< is the particle mass vector including

both masses for occupied and free, 8�[�]
 is the particle semantic

label, ��[�]
 denotes the particle weight, '�,/[�]

 and Σ�,3[�]
 define the

mean and 2x2 covariance of the k-th landmark (see Fig. 4),

assigned to the i-th sample, for = = 1, … , ?, and @ = 1, … , A.

For the purpose of implementation, we adopt the concept of

Rao-Blackwellisation, i.e. marginalizing out a part of the state.

That is, each tracklet is specified by a set of particles that are

sampled from the position and velocity. The appearance and

landmark properties are associated with each sample, thus

contributing to a more precise weighting. Fig. 5 presents an

intuitive example about how particle landmarks are used as

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

anchor points to improve the particle weighting. Subsequently

they are updated in closed form at particle level.

V. MULTI-LAYER PARTICLE FILTER-BASED TRACKING

This section describes in more details how the Multi-Layer

Particle Filter Tracking (MLPT) is implemented by taking into

consideration the probabilistic model that was described

previously. At each point in time t, the dynamic world is

represented by a fixed list of Nh weighted tracklets *�[�]
:

 BC = {*�[�], �D[�]}����E  

Every tracklet *�[�]
 maintains an individual population of

particles (7) and is regarded as a decoupled particle filter

instance with its own prediction and update steps. Although a

tracklet is estimated independently, it is also considered as a

part of a higher level estimation mechanism, at the grid level.

In other words, a tracklet *�[�]
 is seen as a meta-particle having

its weight �D[�]
 (based on the sum of particle un-normalized

weights) and being created and destroyed by the same particle-

filter specific resampling mechanism. In the following we will

first present in detail how a particle filter is applied locally at

the tracklet level and then, how the population of tracklets,

treated as meta-particles, are managed at the grid level.

A. Particle Filter Based Tracklet Estimation

Once new measurements are received, the following steps

recursively estimate the dynamic state for each tracklet as well

as each grid cell:

1) Initialization: In the initialization, a new tracklet is

created for every new measurement cell. Every tracklet is

described by a set of N particles with random positions around

the measurement cell and random velocities sampled from an

initial distribution. At this step, all particles are initialized with

the same occupancy masses and semantic values that are

received from the corresponding input channels. Additionally,

the new tracklet state is extended with a unique set &� of K

random landmarks that are selected from an object contour. For

assigning new landmarks, the following pre-processing steps

are performed. First, every new cell must know which object it

belongs to. We perform a pre-clustering step, similar to the

classical connected component algorithm [39], in order to

identify connected components in the measurement grid space.

Every connected component approximates an object candidate

(a blob) identified with a unique ID. Subsequently, every

measurement grid cell stores the ID of its corresponding

connected component. Second, in order to enable the selection

of landmarks from a blob boundary, its contour is extracted by

collecting all the blob cells that have at least one non-occupied

neighbor cell (free cell or unknown). This operation requires

one pass over the measurement occupancies and proves to be

sufficiently fast, especially when the input data is organized in

a compact form (excluding empty cells and including only the

list of measurements pointing to the corresponding 2-D

positions in the grid). Finally, after determining the

correspondences between one possible object, its contour and

its new tracklets are initialized with a fixed set of landmarks.

For every tracklet we first identify a random index i on the

object contour. Starting from that index, the initialization step

selects K landmarks that are uniformly distributed along the

contour. Specifically, a landmark is initialized by every @ +(= − 1) ∙ I/? contour point, where M is the contour length, K

is the number of landmarks, i is a random index of the starting

contour point used to select the first landmark, with 1 ≤ @ ≤ I

and k is the index used to refer to a selected landmark in &�, for = = 1, … , ? .

In the end, different tracklets that are part of the same grid

blob (object hypothesis) will be described by different

combinations of random landmarks that are selected from the

same blob contour. However, all the particles included into one

tracklet will be initialized with the same fixed constellation of

landmarks, pre-selected to describe the tracklet state.

It has to be noted that this procedure does not guarantee that

landmarks are always selected from the same real object.

However, considering that multiple tracklets are spawned for

the same object, these tracklets (including their particles) will

“compete” against each other and, as a consequence, weaker

tracklets and particles will be discarded in a natural way by the

resampling steps (presented further, in the Tracklet

Management sub-section). Additionally, new tracklet

hypotheses, along with their newly selected anchor points, are

always being created and initialized from the latest

measurements, ensuring in this way different hypotheses

adapted to the newest measurements.

2) Prediction: In this step, particles are predicted at a new

position in the grid, by considering the elapsed time, and their

estimated state at the previous particle filter cycle. A constant

velocity motion model is assumed, where the modeling error is

accounted for by perturbing each propagated sample with a

random noise component.

Fig. 5. An intuitive example of predicting and weighting one particle (red).

Top: using a particle represented as a point described by a position and
velocity. Bottom: using a particle extended with 4 landmarks (blue ellipses).

In both cases the particle is predicted into the same destination cell. However

it can be seen that, in the top scenario a particle is receiving a higher weight,
because it is confirmed by an occupied cell. In the bottom case, even if the

particle is confirmed by the same measurement, it receives a lower weight, due

to its landmark-to-object misalignment

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Note that landmark prediction is done implicitly by the

particle prediction, as the landmarks are conditioned on the

particle state and follow the motion of the particle.

3) Weighting: Every predicted sample is being assigned a

new importance weight. This step incorporates the information

from the measurement into the particle distribution by giving

weights to particles, which are proportional to the likelihood of

matching the observation.

For a measurement L� at time t, and the predicted state from

above M�, the measurement model consists of three components:

a measurement cell likelihood �.L�N0M�[�]), a landmark based

likelihood �.L�O0M�[�]), and a semantic likelihood �(L�M|M�[�]). The

measurement cell likelihood is based on a position error, which

is the distance between the measurement and the closest

particle, while the landmark likelihood depends on the distance

between the particle landmarks and the measurement contours

representing a measure for shape alignment. Furthermore, the

semantic likelihood is defined by a dissimilarity metric given

the particle’s semantics.

In the following, we will refer to these terms as weight

factors, which contribute to the overall particle importance

weight.

If all three likelihood components are independent, the

weight �[�] of the i-th particle ��[�]
 can be defined as:

 �[�] = �P��Q��[�]R = �P��N, ��O, ��MQ��[�]R 

 = �P��NQ��[�]R�P��OQ��[�]R�P��MQ��[�]R 

We use two grids to cache computed distances for speeding

up particle-to-measurement and landmark-to-measurement-

contour association. For computing distance grids, we apply an

algorithm similar to [38]. One grid stores all distances to the

closest occupied points (see Fig. 6) and the other stores all

distances to the closest measurement contours. In addition, each

grid cell stores the position to the closest observation. Based on

these grids, we find �S as the distance between the i-th sample

and the closest occupied point. Assuming a Gaussian error

model, with a given standard deviation TU, the particle-to-

measurement weight component follows as:

 �P��NQ��[�]R = �√WXYZ exp {− U_̂
WYZ_} 

In order to improve the stability in the presence of missed

detections, every particle with a distance to the closest

measurement larger than a given threshold is updated with a

minimum default particle-to-measurement weight – a weight

corresponding to the likelihood that a measurement was not

observed.

We model an object contour point likelihood given the k-th

particle landmark as:

 � [̀3] = �√WXYa exp {− (Ua[b])_
WYa_ } 

where �[̀3]
 represents the distance between the k-th landmark

and its closest contour point defined by the distance map (see

Fig. 6), and T` describes the standard deviation assigned to the

landmark-to-contour distance noise. Assuming error

independence between the total K landmarks, the joint factor �.L�O0M�[�]) assigned to the i-th particle can be computed

according to:

 �P��OQ��[�]R = ∏ �[3]23��  

As in the case of particle-to-measurement weight component,

every landmark with a distance to the closest contour larger than

a given threshold will be assigned a default minimum

landmark-to-contour weight �[3]. This helps in handling

missed detections, avoids sharp changes in the particle weight

(zero weight in the case of wrong or no associations) and

improves the overall algorithm stability.

For the semantic weight, we first calculate a semantic

dissimilarity metric between the predicted label 8� (particle

label) and the associated measurement label 84 received from

the closest occupied object cell:

 �c = 1 −
` ∙ ℎ(8S, 8e) 

where ℎ(8S, 8e) is a score function that is defined as:

 ℎ.8S, 8e1 = fg�, 8S = 8egW, h@iℎhj 8S 9j 8e @� kl=l9�lgm, 8S ≠ 8e  

and
` is a normalization constant:
` = 1/(g� + gW + gm)

having g�, gW and gm. The three score values are selected such

that gm < gW < g�. Considering that the resulting dissimilarity

distance �c is distorted by a Gaussian noise with a given

standard deviation Tc, the semantic weight factor can be

calculated according to:

 �P��MQ��[�]R = �√WXYp exp {− Up_WYp_} 

4) Appearance and Landmark Updates: In order to update

the particle landmarks, that are defined previously according to

the Rao-Blackwellisation process, we use 2x2 Kalman filters

(one per landmark). The state that is estimated by each Kalman

filter is a 2D position. Moreover, each particle’s mass for

Fig. 6. Example of a distance map (right), precomputed for the occupancy

grid (left).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

occupied 4�5,[�] and mass for free 4�6,[�]
 is updated with the

associated measurement masses by using the Dempster-Shafer

rule of combination, as also proposed in [4]. For simplicity, the

semantic labels are not updated.

5) Estimation: A weighted average of the particle states is

applied to estimate both the tracklet states and the grid cell

states. The tracklet state is estimated based on its

corresponding particles, even if its particles are projected into

multiple cells. However, for computing the grid cell state, all

particles projected into the same cell are used, regardless of

to which tracklet they belong. In practice, for a better

processing time we directly use tracklets to get the average

cell state.

6) Resampling: We use a Stochastic Universal Resampling

algorithm with linear complexity to resample the particles after

normalizing particle weights for each tracklet. This algorithm

selects a new set of particles from the previous set by taking

their importance weights into account and thus replacing

particles with lower weights. We also adopt a selective

resampling strategy where the particle resampling is triggered

only when the particle diversity is lower than a predefined

threshold [36].

B. Tracklet Management

Theoretically, the number of tracklets can grow above the

available memory limits (more tracklets could be created in

order to describe the tracked objects). While tracklets should be

replicated and removed according to their existence probability,

the maximum number of tracklets should be fixed within a

predefined memory bound. Consequently, measurements need

to be prioritized. This creates a need for a sophisticated

management mechanism. Intuitively, a tracking mechanism

should do the following: initialize new tracklets in new

measurement cells; keep and replicate old tracklets by

resampling as soon as new observations are associated; remove

tracklets when no measurements are associated for a longer

time interval.

The main idea of the proposed tracklet management is that,

at the end of every grid map particle filter iteration t the final

tracklet list B� is composed of a subset of persistent tracklets BC,q = {*�,S[�] , �D,S[�] }����^
 and another subset of newly initialized

tracklets r�,s = {*�,s[�] , �D,s[�] }����t :

 BC = BC,q ∪ BC,v = {*�,S[�] , �D,S[�] }����^ ∪ {*�,s[�] , �D,s[�] }����t  
The set of persistent tracklets BC,q is obtained by resampling

from all the surviving tracklets propagated from time i − 1 to

time t. The list of newborn tracklets BC,v is obtained by

sampling according to a set of initialization weights ��w��[!]

precomputed for each measurement cell c (see Fig. 7).

As long as the number of tracklets does not reach maximum

capacity, newly initialized tracklets are appended to the existing

list. However, in cases when the maximum memory capacity is

reached, the management mechanism ensures that, through

sampling, the new list of tracklets will have a balanced ratio

between newborn and persistent tracklets. In these extreme

cases, the maximum allowed number of new tracklets is a

parameter of the system and is setup to be less than 20% of the

total available space in the list.

The advanced tracklet management solution can be

summarized into several steps.

1) Compute Tracklet Occupancy Mass.

The tracklet occupancy mass 4D(xgg) can be calculated as

the weighted average of occupancy masses of its particles 4�5,[�]
:

 4D(xgg) = ∑ �z [�] ∙ 4�5,[�]�E���  

where �z [�], is the normalized particle weight. The tracklet

occupancy mass (17) is used in the next steps to determine how

well a measured cell c is covered by its underlying tracklets.

2) Compute the cell mass-based intensity

The cell mass-based intensity {! of a cell c is defined as a

sum of all its tracklet occupancy masses 4D[!](xgg).

 {! = ∑ 4D[!](xgg)�E,|���  

where AD,! denotes the number of tracklets that fall into the cell

c. Intuitively, the mass-based intensity can be interpreted as the

expected number of targets in the cell c. It also provides a

quantitative value about how well a cell is covered by tracklets.

3) Compute the initialization weights

The initialization weights ��w��[!]
 describe how likely it is that

we have to initialize a new tracklet *�[�]
 into a given cell c. As

these weights have to be proportional to the need of initializing

new tracklets, we determine them for each grid cell c as:

 ��w��[!] = }4!(xgg) − {! , 4!(xgg) > {!0 4!(xgg) < {! 

where, 4!(xgg) is the measurement occupancy mass of the cell

c, and {! is the mass-based intensity defined by (18).

Fig. 7 Tracklet Management.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

4) Estimating the number of new and persistent tracklets

Suppose the system memory is limited so that the maximum

number of tracklets that can be created is ADe�$. Additionally,

the maximum number of newly accepted tracklets is Ase�$. Our

goal is to calculate the new numbers for persistent A���,S and

newborn tracklets A���,s, for the next particle filter iteration at i + 1, given the established memory limitations.

The number of potential newborn tracklets AsS5�
 is

determined by counting all the cells that meet the condition 4!(xgg) > {! in (19). Without memory limitation, new

tracklets would be initialized in all AsS5�
 grid cells. However,

having the above defined bounds, the number of newborn

tracklets A���,s to be used in the next particle filter cycle at time i + 1 is estimated as:

 A���,s = min (AsS5� , max (Ase�$, A����`�s`�)) 

In the equation above A����`�s`� is the number of empty slots

available for adding new tracklets, defined as:

 A����`�s`� = ADe�$ − A�,D 

where A�,D is the total number of tracklets used in the current

particle filter iteration. Finally, the updated number A���,S of

persistent tracklets is calculated as:

 A���,S = min (A�,D, ADe�$ − A���,s) 

The total number of all the tracklets at time i + 1, therefore,

is defined as:

 A���,D = A���,S + A���,s, where 0 < A���,D < ADe�$
5) Tracklet sampling

Once the number of persistent A���,S and newborn tracklets A���,s is estimated, the updated set of persistent tracklets BC��,q

is created by selecting A���,S tracklets from {*�,S[�] , �D,S[�] }����^

according to their weights �D,S[�]
. However, for initializing new

tracklets, the method consists of sampling a set of grid cell

indices with a sampling probability proportional to their

assigned initialization weights ��w��[!]
, where ��w��[!]

 is previously

calculated according to (19). Finally, the sampled grid cell

indices serve as the location to initialize new tracklets *���,s[�]
.

As every tracklet represent an independent particle filter, it

requires a particle-level resampling to avoid degeneracy. The

particle-level resampling, explained in the previous section, is

applied only after the tracklet-level management step. In

addition, we use a selective resampling implementation to

trigger the particle-level resampling only for a subset of

tracklets, when their particle diversity is lower than a given

threshold [36]. It is important to note that the resampling

method is applied once per tracklet ID. If the same tracklet was

replicated multiple times by the tracklet-level resampling, its

particles will be resampled once and then copied multiple times

in the replicated tracklets.

V. EXPERIMENTAL RESULTS

In order to evaluate our approach, we use multiple

challenging sequences from real scenarios with provided

ground truth data. The ground truth is manually annotated and

contains different objects (e.g. dynamic and static pedestrians,

vehicles) with various orientation, speed and position.

For comparative results we analyze the tracking errors (see

Fig. 8) obtained with the proposed MLPT approach and with a

similar grid-based tracking solution – the Dempster-Shafer

Probability Hypothesis Density tracking for Dynamic

Occupancy Grid Maps (we will refer to it as DS-PHD) [4].

There are two main motivations for choosing DS-PHD as a

reference algorithm for the comparison. First, it represents a

well-established state-of-the art technique that addresses the

same research problem, i.e., particle filter-based dynamic grid

map estimation. Second, it represents an appropriate candidate

with a similar setup (same sensors, same measurement grid

resolution, same output interface etc.). This enables us to

objectively assess both the proposed MLPT implementation

and the reference DS-PHD in the same fair conditions and on

the same ground-truth data set.

As discussed in previous sections, there are several

conceptual differences between the existing point-based

particle filter estimators and the proposed MLPT approach. The

main differences between DS-PHD and MLPT are centralized

in table II. These conceptual differences are consistent in

comparison with other solutions proposed in the literature [23],

Fig. 8. Evaluation and parameter tuning pipeline.

TABLE II
COMPARISON BETWEEN DS-PHD [4] AND MLPT (PROPOSED)

 DS-PHD MLPT (proposed)

Number of

estimators

1 particle filter

with N particles

(N=8 Millions)

K filters with M particles each,

where M ≪ N (e.g. K=128000,

M=50)

Algorithm
Structure

1 layer of
particles

2 layers: particles and tracklets

Grid cell

estimation

Average of all

the particles in
the cell

Average of all the tracklets in

the cell

Estimated state Position, velocity

and occupancy

Position, velocity, landmarks,

occupancy, semantics

Particle-to-cell

regrouping

Yes Can be ignored. Using tracklet-

to-cell mapping

Resampling On particle level First – resampling on tracklet
level, then resampling particles

for selected tracklets only

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

[24], [26], [27], [29], [31].

Fig. 9 shows an example with the results of the proposed

MLPT approach for a traffic scenario. The shown example

includes consecutive snapshots sampled over a short period of

time. The estimated dynamic world is represented as dynamic

tracklets. The ego-vehicle is moving straight, and then is

making a left-turning maneuver. Every snapshot presents the

perceived world and the estimated tracklets. Every tracklet is

represented by a speed vector and colored based on its moving

direction.

Fig. 10 presents a scene that includes a white vehicle

stopping at the crosswalk and a bicyclist moving in the same

direction along with the host vehicle. The subsequent images

show comparative examples with the estimated tracklets (Fig.

10.b), all weighted particles sharing the same world (Fig. 10.c),

an example with one selected tracklet and its features (Fig. 10.d)

and an example with the same tracklet represented by its

weighted particles and features (Fig. 10.e).

Fig. 11 shows a traffic light scenario, with stationary objects

stopping at the red traffic light (see Fig. 11.a) and then

accelerating, which is recorded approximately 9.5 seconds later

(see Fig. 11.b). The example compares the results estimated by

DS-PHD (see Fig. 11.a left and Fig. 11.b left) and the proposed

MLPT (see Fig. 11.a right and Fig 11.b right). In the stationary

case, DS-PHD shows residual velocities, especially in the larger

object (bus), due to a higher ambiguity generated by particles

migrating from one cell to another inside a larger and uniform

object area (see Fig. 11.a left). MLPT reduces the residual

Fig. 9. MLPT Results for a traffic scenario, including consecutive snapshots sampled over a short period of time. The ego-vehicle is moving straight, and then is

making a left-turning maneuver. Every snapshot includes images showing the vehicle’s surroundings in the following order: front, rear, left and right. Additionally,

every snapshot includes the perceived world and the estimated tracklet. The occupancy and semantic grids are overlayed into one plane. Every tracklet is placed
on top of the grid plane and colored based on its moving direction. The color value indicates the tracklet velocity vector orientation, while the saturation value is

proportional to the velocity magnitude (white for static objects).

Fig. 10. A traffic scene showing a white vehicle stopping at the crosswalk and
a bicyclist moving in the same direction along with the host vehicle. (a)

Camera image. (b) Estimated dynamic tracklets for both front car and

bicyclist. (c) The weighted particles provided by all the tracklets. Larger
weights are illustrated by higher grayscale intensity. (d) One tracklet and its

features, selected from the tracked bicyclist. For more clarity, the other

tracklets are deactivated. (e) The same tracklet is illustrated by its weighted
particles (squares) and features (spheres). It can be seen that the particles’

features tend to be clustered around the estimated tracklet features in (d).

Fig. 11. A comparison between DS-PHD and MLPT (proposed) for a traffic

light intersection use-case. Top: camera images from the traffic scene. Bottom:
a region of interest extracted from the estimated dynamic grid (top view). (a).

All vehicles are being stopped at the red light. (b) All the vehicles are

accelerating (approximately 9.5 seconds later). The estimations are
represented as a velocity vector field. Each velocity vector is attached to a

dynamic grid cell. A vector color encodes the moving object orientation, while

its saturation and length is direct proportional to the velocity magnitude (white

is used for stationary vehicles).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

velocities by using landmarks to stabilize the particle-to-

measurement matching (see Fig. 11.a right). As illustrated in

the Fig. 11.b right, particle “anchor” points also improve the

estimation of dynamic cells, especially in the middle of larger

objects, as opposed to simple particles (without landmarks) that

tend to provide reliable velocity vectors only in front of the

accelerating bus (see Fig.11b left). Subsequently this leads to

an improved algorithm convergence, as illustrated in Fig. 15,

right (the comparison between the velocity graphs estimated for

an accelerating object).

However, one has to note that estimated grid velocities can

still be temporarily biased, especially when the tracked objects

are close to each other. For example, Fig. 12 shows a traffic

scene situation with a pedestrian crossing in front of the ego

vehicle from left to right. The dynamic grid result illustrates the

crossing pedestrian (green arrows). Additionally, the estimated

grid includes the projection of two adjacent cars represented by

white dots (white arrows which appear as dots due to the zero

velocity of the two stationary vehicles). As soon as the crossing

pedestrian passes in front of the right vehicle, some of

pedestrian’s velocity vectors are biased towards the stationary

car. This is explained by the fact that some of the dynamic

particles, including their anchor points are incorrectly

associated to the measurements corresponding to the stationary

vehicle. Although these particles are described by a lower

weight and, subsequently, are more likely to be removed by the

resampling mechanism, they still might lead to temporarily

inaccurate estimated tracklets.

A. Parameter Tuning and Error Model Estimation

 To perform a quantitative evaluation of both approaches, we

introduce a parameter tuning framework (see Fig. 8) that

determines the optimal parameter values for the given tracking

algorithms. The proposed parameter tuning framework

executes the given algorithm multiple times on the same

reference sequence with a different combination of tuning

parameters. The reference sequence describes a real traffic

scenario and includes manually annotated ground truth objects.

Each ground truth object is represented by a box and includes

object semantics (vehicle, pedestrian, etc.), position, velocity

and size.

There are two goals we hope to achieve through evaluation.

One goal is to see how the accuracy metrics are evolving based

on different tuning parameters. Another goal is to find the best

combination of the tuning parameters that provide the highest

estimation accuracy. The tuning parameters used were:

standard deviation for matching features; occupancy mass

decay factor (persistence probability) when no measurements

are associated to particles; velocity process noise (standard

deviation of the velocity noise); process noise for initializing

new particles (standard deviation used to sample the

initialization velocity). The permutations of tuning parameters

are predetermined by either uniformly sampling from a domain

of values or manually selecting from desired values. At each

iteration, the evaluation process runs on the same ground truth

sequence but with different instances of tuning parameters.

Every permutation of tuning parameters is then stored as a

separate instance.

The framework computes respective metrics for each

iteration such as the sequence mean absolute error (MAE), root

mean squared error (RMSE) and the standard deviation

(StdDev) for speed and distance estimation. Our goal is to find

a model which describes this error in the continuous space as a

linear function of tuning parameters with the subset of discrete

error values. To find this error model, we use a linear

regression, where tuning parameters (features) estimate

velocity mean absolute error �� � ℝ (target values). The error

model is approximated by a quadratic polynomial function �: ℝw → ℝ defined as:

�� = �(��, ��, … , �w)

 = �� + ����W + ⋯ + �w���wW + �w�W�� + ⋯ + �Ww�W�w, (24)

Fig. 12. A traffic scene showing a pedestrian crossing in front of the ego

vehicle from left to right. Top: image snapshots from the corresponding traffic
scene. Bottom: A part of estimated dynamic grid in the proximity of the ego-

vehicle (top-view). The dynamic grid result shows a crossing pedestrian (green

arrows). Additionally, the estimated grid includes the projection of two
adjacent cars represented with white dots (not visible in the top camera

images). The ego vehicle, as well as the other two left and right cars are

stopped at the traffic light. It can be seen that as soon as the crossing pedestrian
passes closer to the static obstacle (in front of the right vehicle), some of the

pedestrian velocity vectors are temporarily biased by the wrong associated

measurements belonging to stationary vehicle.

Fig. 13. Estimated Error Model. The examples show how the Velocity MAE is varying depending on different tuning parameters such as: StdDev of longitudinal

velocity vs. StdDev of initial particle velocity (left), StdDev of initial particle velocity vs. StdDev of measurement featrues (middle) vs Persistence Probability.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

where ��, … , �Ww�W � ℝ are the coefficients of the polynomial

determined by the linear regression, ��, … , �w � ℝ are the tuning

parameters, and l is the number of tuning parameters.

From (24), the optimal tuning parameters correspond to those

arguments ��, … , �w for which the error �� function is minimum.

The same parameter tuning procedure was applied for both DS-

PHD and the proposed MLPT solution.

Fig. 13 shows the estimated error model in the case of the

MLPT algorithm. It can be observed how the velocity error

surface is changing depending on different parameter

combinations and parameter values.

Fig. 14 illustrates similar example with the error model in

case of DS-PHD. Specifically, the picture shows how the Mean

Absolute Velocity (MAE) error is varying with respect to

different distributions to initialize new particles (left), or with

respect to selected process noise (in this case velocity standard

deviation) that is used in the particle prediction. In both charts

we show the initially selected tuning parameters and the best

tuning parameters, estimated after analyzing the evaluation

results over different combinations of parameters.

B. Evaluation with provided ground truth data

The main objective of this phase was to evaluate both

particle-filter grid map tracking solutions by using the ground

truth sequences.

Fig. 15 presents a comparison between the estimated velocity

for MLPT and DS-PHD in a scenario with manually annotated

targets. The evaluation was done only on specific selected

objects, in order to see how the estimated velocity of a given

target is evolving in time. The left image shows the bounding

boxes provided by the ground truth and the estimation result of

MLPT. The other two images present the result of the velocity

estimation of both algorithms (MLPT: blue, DS-PHD: orange)

compared to the ground truth velocity (green). The example

graphs correspond to an almost stationary pedestrian (central

image) and an accelerating car (right image). As previously

described in the Fig. 11, it can be seen that MLPT converges

faster and closer to the ground truth value. However, it also

Fig. 15. Evaluating the MLPT and DS-PHD on individual objects from the ground truth sequence (left image). Each individual diagram represents the estated

velocity for one single ground truth object (green line). The MLPT results is shown with blue. The DS-PHD estimation is illustrated with yellow line.

TABLE III
QUANTITATIVE RESULTS DS-PHD [4] AND MLPT (PROPOSED)

 DS-PHD MLPT (proposed)

Number of particles 8M particles 10K tracklets,
50 particles/tracklet

10K tracklets,
128 particles/tracklet

Metric MAE StdDev MAE StdDev MAE StdDev

With the tuning parameters used before optimal parameter tuning

Velocity 0.82 0.94 0.67 0.53 0.56 0.35

Distance 0.38 0.02 0.46 0.02 0.47 0.016

With the best tuning parameters

Velocity 0.65 0.51 0.546 0.42 0.474 0.788

Distance 0.38 0.02 0.24 0.02 0.46 0.02

Fig. 14. DS-PHD [4] Tuning Parameters vs. Estimated Velocity Error. Left:

the picture shows how the Mean Absolute Velocity (MAE) error is varying

when selecting different distributions to initialize new particles. Right: the plot
shows how the same velocity error is changing with respect to selected process

noise (in this case velocity standard deviation) that is used in the particle

prediction. In both figures we show the initially selected tuning parameters
and the best tuning parameters, estimated after analyzing the evaluation results

over different combinations of parameters.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

shows that MLPT is described by a higher estimation variance

than DS-PHD.

Table III centralizes the mean absolute error (MAE) and

standard deviation (StdDev) for the velocity and distance

estimation using the two methods. The error metrics are

calculated for the entire sequence by considering all the

estimated objects. For MLPT we performed two different

evaluations – with 50 particles per tracklet, and 128 particles

per tracklet. Moreover, for both algorithms we include an

evaluation based on initially tuning parameters, and another

evaluation based on the best tuning parameters. Consequently,

MLPT provides more accurate estimation with slightly higher

variances in some cases.

Table IV compares both algorithms’ accuracy by calculating

the Mean Absolute Percentage Error (MAPE) for the estimated

object velocity. The estimation accuracy was calculated for

three different velocity ranges: 1 – 3 m/s, 3 – 7 m/s and above

7 m/s. It can be observed that the obtained percentage errors are

higher for targets moving at lower velocities (1-3 m/s). This is

due to the normalization of the estimated velocity by a lower

ground truth velocity. In case of the velocity ranges 1 – 3 m/s

and 3 – 7 m/s MLPT provides a higher accuracy than DS-PHD.

At higher object velocities (> 7 m/s) DS-PHD achieves better

results. The better performance of MLPT at low speeds (like

traffic light intersection scenarios) where accelerating and

decelerating objects are more frequent, can be explained by the

faster convergence towards the ground truth value.

C. Processing time on a GPU implementation

 Key steps in the inner-loop of the proposed algorithm were

partially optimized in CUDA; other steps such as the use of

distance transform to generate intermediate data structures that

speed up associating features to measurement and the

management of tracklets were left on the CPU. These steps are

still un-optimized and are still an area of active research from

the point of view of functionality in relation to the proposed

algorithm and of implementation techniques for optimal

performance. Fig. 16 shows the performance for a

parametrization of 128K tracklets, 128 particles per tracklet and

3 features per particle. The size of the measurement grids is

1232x1232 cells, where each cell covers a 0.13x0.13 m region.

The algorithm is executed on a Nvidia 1080Ti GPU platform.

The graphs presented in Fig.16 are summed up durations in

milliseconds of the operations on GPU for predicting particles

using linear motion (4.2ms), associating features to

measurements (7.8ms), weighting particles (3.9ms) and

estimating the state of the tracklets (3.9ms). The total average

duration of all steps is 19.9ms.

VI. CONCLUSIONS

In this paper we presented a novel particle filter solution and

introduced important concepts to track dynamic grid maps. The

main motivation of the work was to address existing challenges

in the field of grid map estimation and object tracking, in

general. The problem of combining various sensor

measurements was addressed by a multi-layer particle filter-

based tracking approach (MLPT). Information like occupancy,

object semantics, or shape was used to estimate the object state

via Bayesian update mechanisms. Instead of using one particle

filter for estimating the entire grid, we employ multiple

individual particle filters, organized into tracklets that share the

same world. By having tracklets in place, various particle filter-

related steps like initialization or sampling were performed at

the tracklet step. This offered the advantage of working in

batches of particles instead of iterating over every single

particle. Another important concept was “self-localizing”

tracklets. Like simultaneous localization and mapping

approaches, in our tracking solution every particle state is

extended with a small set of landmarks that are randomly

selected from the object contour. Intuitively, this idea was

adopted in order to decrease the effect of “drifting” tracklets

and, consequently, to obtain a more precise velocity estimation.

Although this work aimed to provide a more stable

environment estimation by using “anchored” tracklets and

particles via landmarks, further work can address better method

variants to detect, select and manage these landmarks as well as

to reduce the ghost velocities by using, for example, static map

information, similarly to [27].

The experimental results with the ground-truth data illustrate

that MLPT can estimate the dynamic world with a higher

accuracy than previous methods. Although having richer

particles contributes to more accurate results and a more

comprehensive understanding of the world, this comes at a cost

of having more complex structures and intermediate data

representations. Incorporating additional features as part of the

particle is a new topic that requires more focus in future

research.

TABLE IV
COMPARISON BETWEEN DS-PHD [4] AND MLPT (PROPOSED)

BY USING MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

Velocity Range 1-3 m/s 3-7 m/s > 7 m/s

DS-PHD 21.05 % 14.9 % 10.3 %

MLPT
(proposed)

20.1 % 14.6 % 11.6 %

Fig. 16. Performance of the main steps of the MLPT algorithm.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

REFERENCES

[1] Z. Sun, G. Bebis, and R. Miller, "On-road vehicle detection: A review,"
IEEE Trans. Pattern Anal. Mach. Intel., vol. 28, no. 5, pp. 694–711, May

2006, doi:10.1109/TPAMI.2006.104, [Online].

[2] S. Sivaraman, M. M. Trivedi, "Looking at Vehicles on the Road: A Survey
of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis,"

IEEE Trans. Intel. Transp. Sys., vol.14, no.4, pp.1773-1795, Dec. 2013,

doi: 10.1109/TITS.2013.2266661, [Online].
[3] D. Nuss, T. Yuan, G. Krehl, M. Stuebler, S. Reuter and K. Dietmayer,

"Fusion of laser and radar sensor data with a sequential Monte Carlo

Bayesian occupancy filter," 2015 IEEE Intel. Veh. Symp. (IV), Seoul,
2015, pp. 1074-1081, doi: 10.1109/IVS.2015.7225827, [Online].

[4] D. Nuss, et al., "A random finite set approach for dynamic occupancy grid

maps with real-time application,” Intl. Jrnl. Robo. Res., vol. 37, no. 8, pp.
841-866, 2017.

[5] X. Zhang, W. Xu , C. Dong, and J.M. Dolan, “Efficient L-shape fitting

for vehicle detection using laser scanners,” 2017 IEEE Intell. Veh. Symp.
(IV), Los Angeles, pp. 54-59, 2017.

[6] A. Petrovskaya and S. Thrun, “Model based vehicle detection and

tracking for autonomous urban driving,” Auton. Robots, vol. 26, no. 2-3,
pp. 123-139, 2009, doi:10.1007/s10514-009-9115-1, [Online].

[7] A. Geiger, P. Lenz and R. Urtasun, "Are we ready for autonomous

driving? The KITTI vision benchmark suite," 2012 IEEE Conf. Comp.
Vis. and Pat. Recog., Providence, 2012, pp. 3354-3361,

doi:10.1109/CVPR.2012.62448074, [Online].

[8] D. Pfeiffer and U. Franke, "Efficient Representation of Traffic Scenes by
Means of Dynamic Stixels," 2010 IEEE Intel. Veh. Symp., San Diego,

2010, pp. 217-224, doi:10.1109/IVS.2010.5548114, [Online].

[9] L. Schneider, M. Cordts, T. Rehfeld, D. Pfeiffer, M. Enzweiler, U. Franke,
M. Pollefeys, and S. Roth, "Semantic Stixels: Depth is not enough," 2016

IEEE Intell. Veh. Symp. (IV), Gothenburg, 2016, pp. 110-117, doi:

1109/IVS.2016.7535373, [Online].
[10] R. Varga, A. Costea, H. Florea, I. Giosan and S. Nedevschi, "Super-sensor

for 360-degree environment perception: Point cloud segmentation using

image features," 2017 IEEE 20th Intl. Conf. Intel. Transp. Sys. (ITSC),
Yokohama, 2017, pp. 1-8, doi: 10.1109/ITSC.2017.8317846, [Online].

[11] M. H. Daraei, A. Vu and R. Manduchi, "Velocity and shape from tightly-

coupled LiDAR and camera," 2017 IEEE Intel. Veh. Symp. (IV), Los
Angeles, pp. 60-67, 2017, doi: 10.1109/IVS.2017.7995699, [Online].

[12] F. Kunz, D. Nuss, J. Wiest, H. Deusch, S. Reuter, F. Gritschneder, A.

Scheel, M. Stubler, M. Bach, P. Hatzelmann, C. Wild, and K. Dietmayer,
"Autonomous driving at Ulm University: A modular, robust, and sensor-

independent fusion approach," 2015 IEEE Intel. Veh. Symp. (IV), Seoul,

2015, pp. 666-673, doi: 10.1109/IVS.2015.7225761, [Online].
[13] Y.-L. Chen, C.-T. Lin, C.-J. Fan, C.-M. Hsieh, and B.-F. Wu, “Vision-

based nighttime vehicle detection and range estimation for driver

assistance,” IEEE Intl. Conf. SMC, Singapore, Oct. 2008, pp. 2988–2993,
doi: 10.1109/ICSMC.2008.4811753, [Online].

[14] M. Isard and A. Blake “Condensation – conditional density propagation

for visual tracking,” Intl. Jrnl. Comp. Vis., vol. 29, no. 5, pp. 5-28, Aug.
1998, doi: 10.1023/A:1008078328650, [Online].

[15] Jackson, J.D.; Yezzi, A.J.; Soatto, S., "Tracking deformable moving
objects under severe occlusions," 43rd IEEE Conference Deci. Cont.

(CDC), vol.3, no., pp. 2990-2995, 2004, doi:

10.1109/CDC.2004.1428922, [Online].
[16] A. Vatavu, R. Danescu, and S. Nedevschi, "Stereovision-Based Multiple

Object Tracking in Traffic Scenarios using Free-Form Obstacle

Delimiters and Particle Filters," IEEE Trans. Intel. Transp. Sys., Vol. 16,
No. 1, pp. 498-511, Feb. 2015, doi: 10.1109/TITS.2014.2366248,

[Online].

[17] A. Vatavu, N. Rexin, S. Appel, T. Berling, S. Govindachar, G. Krehl, J.
Peukert, M. Schier, O. Schwindt, J. Siegel, C. Zalidis, T. Rehfeld, D.

Nuss, M.M. Maile, S, Zimmermann, K. Dietmayer, A. Gern,

"Environment Estimation with Dynamic Grid Maps and Self-Localizing
Tracklets," in Proc. 2018 IEEE 21st Intl. Conf. Intel. Transp. Sys. (ITSC),

Maui, Hawaii, USA, Nov., 2018, pp. 3370-3377.

[18] S. Kraemer, M. E. Bouzouraa and C. Stiller, "Simultaneous tracking and
shape estimation using a multi-layer laserscanner," in Proc. 2017 IEEE

20th Intl. Conf. Intel. Transp. Sys. (ITSC), Yokohama, 2017, pp. 1-7, doi:

10.1109/ITSC.2017.8317667, [Online].
[19] A. Broggi, S. Cattani, M. Patander, M. Sabbatelli and P. Zani, "A full 3D

voxel-based dynamic obstacle detection for urban scenario using stereo

vision," in Proc. 2013 IEEE Intl. Conf. Intel. Transp. Sys. (ITSC), The
Hague, 2013, pp.71-76, doi: 10.1109/ITSC.2013.6728213, [Online].

[20] A. Elfes. “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp.46-57, June 1989, doi:

10.1109/2.30720, [Online].

[21] T.-D. Vu, O. Aycard, and N. Appenrodt, “Online localization and
mapping with moving object tracking in dynamic outdoor environments,”

2007 IEEE Intel. Veh. Symp. (IV), Istanbul, 2007, pp. 190–195, doi:

10.1109/IVS.2007.4290113, [Online].
[22] C. Coue, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessiere.

“Bayesian Occupancy Filtering for Multitarget Tracking: An Automotive

Application,” Intl. Jrnl. Robo. Res., vol. 25, no. 1, pp. 19-30, Jan. 2006,
doi: 10.1177/0278364906061158, [Online].

[23] R. Danescu, F. Oniga, S. Nedevschi, “Modeling and Tracking the Driving

Environment with a Particle Based Occupancy Grid” IEEE Trans Intel.
Transp. Sys., vol. 12, no. 4, pp. 1331-1342, Dec. 2011, doi:

10.1109/TITS.2011.2158097, [Online].

[24] A. Negre, L. Rummelhard, and C. Laugier, “Hybrid Sampling Bayesian
Occupancy Filter,” 2014 IEEE Intel. Veh. Symp. (IV), Dearborn, 2014,

pp. 1307–1312, doi: 10.1109/IVS.2014.6856554, [Online].

[25] G. Tanzmeister and D. Wollherr, “Evidential grid-based tracking and
mapping,” IEEE Trans. Intel. Transp. Sys., vol. 18, no. 6, pp. 1454-1467,

June 2017, doi:10.1109/TITS.2016.2608919.

[26] S. Steyer, G. Tanzmeister and D. Wollherr, "Object tracking based on
evidential dynamic occupancy grids in urban environments," 2017 IEEE

Intel. Veh. Symp. (IV), Los Angeles, 2017, pp. 1064-1070, doi:

10.1109/IVS.2017.7995855, [Online].
[27] S. Steyer, G. Tanzmeister and D. Wollherr, "Grid-Based Environment

Estimation Using Evidential Mapping and Particle Tracking," IEEE
Trans. Intel. Veh., vol. 3, no. 3, pp. 384-396, Sept. 2018. doi:

10.1109/TIV.2018.2843130, [Online].

[28] Sascha Steyer, Georg Tanzmeister, Christian Lenk, Vinzenz Dallabetta,
Dirk Wollherr, "Data Association for Grid-Based Object Tracking Using

Particle Labeling," in Proc. 2018 IEEE 21st Intl. Conf. Intel. Transp. Sys.

(ITSC), pp. 3036-3043, 2018, doi: 10.1109/ITSC.2018.8569511,
[Online].

[29] R. Danescu, S. Nedevschi, “A Particle-Based Solution for Modeling and

Tracking Dynamic Digital Elevation Maps,” IEEE Trans. Intel. Transp.
Sys., vol. 15, No. 3, pp. 1002-1015, June 2014, doi:

10.1109/TITS.2013.2291447, [Online].

[30] A. Vatavu, R. Danescu, and S. Nedevschi, "Modeling and Tracking of
Crowded Traffic Scenes by using Policy Trees, Occupancy Grid Blocks

and Bayesian Filters," in Proc. IEEE 17th Intl. Conf. Intel. Transp. Sys.

(ITSC), Chingdao, Shandong, October 9-11, 2014,
doi:10.1109/ITSC.2014.6957991, [Online].

[31] L. Rummelhard, A. N`egre, and C. Laugier, “Conditional Monte Carlo

Dense Occupancy Tracker,” in Proc. 2015 IEEE 18th Intl. Conf. Intel.
Transp. Sys. (ITSC), Las Palmas, Spain, 2015, pp. 2485–2490, doi:

10.1109/ITSC.2015.400, [Online].

[32] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping problem,”

in 18th Nat. Conf. Art. Intel., pp. 593-598, 2002.

[33] C. Wöhler, O. Schumann, M. Hahn and J. Dickmann, "Comparison of
random forest and long short-term memory network performances in

classification tasks using radar," 2017 Sens. Data Fus.: Trends, Sols.,

Apps. (SDF), Bonn, 2017, pp. 1-6, doi: 10.1109/SDF.2017.8126350,
[Online].

[34] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. “Rao-Blackwellised

Particle Filters for Dynamic Bayesian Networks,” in Proc. 16th Conf.
Uncert. Art. Intel. (UAI), pp. 176-183, 2000.

[35] R. Kalman, "A new approach to linear filtering and predict ion problems",

in Trans. ASME. Jrnl. Bas. Eng., vol. 82, pp. 35-45, 1960.
[36] S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics. Cambridge,

MA, USA: MIT Press, 2006.

[37] P. Smets, "The combination of evidence in the transferable belief model,”
IEEE Trans. Pattern Anal. Mach. Intel., vol. 12, no. 5, pp. 447–458, 1990.

[38] G. Borgefors, "Distance transformations in arbitrary dimensions,"

Comput. Vis. Graph. Image Proc. 27, pp. 321–345, 1984.
[39] K. Suzuki, I. Horiba, and N. Sugie, "Linear-time connected-component

labeling based on sequential local operations,” Computer Vision and

Image Understanding, Vol. 89(1), pp. 1-23, 2003.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

16

Andrei Vatavu (M’12) received the M.S.

degree in computer science, from Technical

University of Cluj-Napoca, Cluj-Napoca,

Romania, in 2008, followed by the PhD

degree (Computer Science) in 2014 from the

same university. From 2007 to 2011 he was

research assistant with the Computer

Science Department, TUCN, and from 2011

to 2016 he was Lecturer with the same university, teaching

Image Processing, Data Structures and Algorithms and Object

Oriented Programing. He is currently working with Mercedes-

Benz Research and Development North America, Inc.,

Autonomous Driving Department. His main research interests

include sensor fusion, grid map based estimation and object

tracking with the application in Autonomous Driving.

Melissa Rahm received the B.S. degree in

mathematics from University of Applied

Sciences, Stuttgart, Germany, in 2017. She

is currently pursuing the M.S. degree in

applied computer science with focus on

autonomous systems at University of

Applied Sciences, Esslingen, Germany and

is writing her master’s thesis under the

supervision of Mercedes Benz R&D North

America, Sunnyvale, CA, US.

Suresh Govindachar received the B.

Tech. degree in mechanical engineering in

1983 from the Indian Institute of

Technology, Powai, M.S. degree in

theoretical and applied mechanics in 1985,

M.S. degree in mathematics in 1989, and

Ph.D. degree in algebra in 1992 from

Cornell University. He has since been

working on optimizing applications for

deployment with real-time performance in embedded systems.

Gunther Krehl received the M.S degree in

computer science and engineering from the

Technical University of Ilmenau,

Germany, in 2014. Since then, he has been

working in the Autonomous Driving

department of Mercedes-Benz Research &

Development North America, Inc. where

his main focus is on sensor fusion.

Specifically algorithm design for

multimodal belief fusion of radar, lidar, stereo and mono vision

into an overall environment representation. Further interests

expand to machine learning techniques, multi-layer grid

representations, object tracking and general optimization.

Abhishek Mantha received a B.S. degree

in Computer Science with an emphasis in

artificial intelligence from the University of

Southern California in 2018. He is currently

working on evaluating sensor fusion

systems at Mercedes-Benz Research and

Development North America.

Sagar Ravi Bhavsar received the B.E.

degree in Electronics and Communications,

in 2013 from Gujarat Technological

University, India followed by M.S. degree

in Electrical Engineering from The

University of Texas at Arlington, in 2015.

He works as a Senior Software Engineer

with Mercedes-Benz Research and

Development North America’s Autonomous Driving team. His

research interests include Object detection and tracking, and

Sensor Fusion.

Manuel Schier finished a dual study

program in 2014. This included a B.E.

degree in industrial electronics from the

University of Applied Sciences Ulm,

Germany and an apprenticeship as an

automotive mechatronics technician in

collaboration with EvoBus GmbH in Neu-

Ulm, Germany. In 2017 he received the

M.S. degree in electrical engineering from the University Ulm,

Germany. Since 2017 he’s working as a Software Engineer in

the Sensor Fusion team of the Autonomous Driving department

of Mercedes-Benz in Sunnyvale, California.

Janis Peukert received the M.S. degree in

electrical engineering and information

technology from Karlsruhe Institute of

Technology in 2016. He is currently

working on perception systems for

autonomous vehicles at Mercedes-Benz

focusing on consistent object tracking and

particle filters.

Michael Maile received the Dipl. Phys.

degree in biophysics from the University of

Ulm. He was with the Optoelectronics

Department, where he was involved in the

fields of optoelectronic components,

telematics, crash avoidance, environment

perception, and sensor fusion for

autonomous vehicles. He manages the

Sensor Fusion and Localization Team, Autonomous Driving

Department, Mercedes-Benz Research and Development North

America, Inc.

