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Abstract—One of the indispensable functions of a self-driving
vehicle is to estimate its dynamic world, which includes various
traffic participants within complex driving scenarios. The
estimation mechanism has to be flexible, fast and robust. However,
achieving these requirements is still challenging. Dynamic grid
maps are one of the possible ways to combine and estimate the
multi-sensory information at an intermediate level. In this paper
we present a particle filter-based grid map estimation which
addresses several challenges. First, we propose multi-layer particle
filter-based tracking solution (MLPT) that uses two measurement
grid channels as input: an occupancy grid and a semantic grid.
Second, we introduce the concept of structuring the particle
population into batches, where each batch represents an
individual tracklet. Rather than using one particle filter for
estimating the entire grid, we employ multiple individual particle
filters (tracklets) that share the same world. Third, a concept of
“self-localizing” tracklets is presented. Similar to simultaneous
localization and mapping approaches, in our tracking solution
every particle state is extended with a small set of landmarks. This
allows a tracklet to “self-localize” itself with respect to tracked
object boundary and leads to a more precise velocity estimation.
Finally, we introduce an advanced tracklet management
mechanism that allows executing some specific particle filter
operations at the tracklet level. This optimization provides
multiple advantages. Experimental results with ground-truth data
show improvement in the estimation accuracy in comparison to
similar techniques.

Index Terms—Particle Filter, Grid Map, Tracklets,
Autonomous Driving, Object Tracking, Self-Localizing Tracklets.

I. INTRODUCTION

ONE of the key requirements of an autonomous vehicle is
the ability to accurately perceive the environment along
with its complex infrastructure. The process of acquiring
knowledge about a vehicle’s surrounding world is a basic
prerequisite for advanced automated driving functions,
including collision avoidance, path planning and motion
control. To reliably model the environment, an estimation
system must address the following challenges: support large
amounts of varying measurements from different perception
subsystems; decouple dependence on specific sensor
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Fig. 1. Multi-Layer Particle Filter based Tracking (MLPT) for Dynamic Grid
Maps. Top left and right images illustrate a snapshot from the traffic scene,
provided by vehicle documentation cameras. The result of estimating dynamic
objects is represented as a set of tracklets (visible as speed vectors in the
image). The tracklet colors describe moving direction of the target objects. The
color saturation encodes the velocity magnitude (white is for stationary
objects).

configurations; synchronize and filter input measurement data;
detect and track critical traffic participants within an
autonomous vehicle’s drivable field-of-view.

In order to obtain a consistent representation in various
complex scenes, obstacle detection and tracking algorithms rely
on information acquired from different sensors such as radars
(for directly estimating the object motion [3]), LiDAR (for a
more precise obstacle position and shape [5], [6], [7]), and
vision (for acquiring both range and semantic information [8],
[9], [10]). Moreover, to generate a deeper understanding of the
world, existing architectures rely on combinations of sensors to
offset the shortcomings of individual sensor modalities [10],
[117, [12].

Various techniques for modeling and tracking traffic
participants have been proposed over the past years [1], [2].
Existing approaches can be divided into two main abstraction
levels. Higher level abstraction methods focus on object-level
processing. In most solutions, the objects are represented by
simple and intuitive models such as boxes [13] or L-shapes [5].
In order to increase the robustness, various techniques try to
include models with adaptive geometry such as boxes with
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variable size [6], parametrized curves [14], deforming polygons
[15], [16], rigid objects described by point sets [18], voxels
[19]. However, object-level processing comes with its own
limitations. As more sensors contribute to perceive the same
world or when input measurements become noisy and cluttered,
common functions, such as object-level data association,
matching and grouping, require additional approaches to deal
with issues like incorrectly grouped targets or inaccurate state
parameter estimations. Therefore, in order to overcome these
object-level challenges and reduce computational complexity,
many solutions focus on modeling the dynamic world at a lower
level of abstraction such as the ones described in [8],[18].

A well-known technique that has been used for lower level
representation and tracking is grid-mapping. In a grid map, the
surrounding space is tessellated into rectangular grid cells. Each
cell is an independent building block of the space that stores
properties like occupancy probability [20]. The traditional
approaches incrementally update the cell occupancy values,
assuming that the surrounding environment is static.

Additional approaches take advantage of the temporal
inconsistencies between occupied and free space. For example,
in [21], an object is labeled as “moving” if its location was
previously sensed as free space. Other approaches explicitly
consider the uncertainties to build the dynamic map of the
environment. In [22] a Bayesian Occupancy Filter is proposed,
where each grid cell state is represented by its occupancy and
2D velocity components.

More recent approaches propose different dynamic grid map
estimation variants based on particle filters [4], [23], [25], [27],
[29], [30], [31]. The grid cell state is approximated by a set of
samples. Particles are not associated permanently to one grid
cell state but are propagated according to their own motion
model and, subsequently, are reassigned to new destination
cells. Then, all particles receive a weight proportional to the
occupancy belief of the new destination cell. When the new
target cells are sensed to be occupied, higher weights are
assigned to those particles. In general, a particle predicted in the
middle of a larger object can be assigned to any of the occupied
cells and still be rewarded with a high weight. In other words,
the particles receive their weights without being aware of their
own position with respect to the tracked object hypothesis. This
results in higher uncertainties and slower algorithm
convergence (see Fig. 5, top). In order to improve the estimation
accuracy, especially for larger objects, we would need to
employ extra features from various sensors or increase the
number of particles. Therefore, a new challenge arises: what is
the best way to incorporate more knowledge about the
surrounding world in the particle state, increase the system
flexibility, and keep a fixed memory space for each particle?

Starting from our previous work, presented in [17], we
address the above described problems and present four concepts
to improve the particle filter-based grid map estimation.

The first concept treats the dynamic grid-map estimation as
a multi-channel measurement processing. We propose a Multi-
Layer Particle Filter based Tracking solution (MLPT) that uses
two evidence grids as input: an occupancy grid map channel,
which contains the occupancy belief for each individual cell,

and a semantic grid map channel, in which every grid cell is

described by the most likely object class label.

The second concept adopts the idea of structuring the entire
particle cloud into smaller independent batches of particles,
where each batch represents an independent density. We refer
to this batch of particles as a tracklet (see. Fig. 1). Instead of
using one particle filter for estimating the entire grid, we
employ multiple individual particle filters (tracklets) that share
the same grid world and describe the state of individual object
parts. Although particles from different tracklets can travel
between different cells and share the same measurement
information, they are linked to their own uniquely identified
group (i.e. tracklet).

The third concept introduces tracklets that can “self-localize”
themselves with respect to tracked object boundary, by
extending the particle state with additional knowledge of the
object shape. Like simultaneous localization and mapping
approaches such as FastSLAM [32], in the proposed tracking
solution, every particle model is extended with a small set of
landmarks that are randomly selected from the object contour
(see Fig. 4). Subsequently, the “anchored” particles contribute
to a more precise tracklet state estimation (see an intuitive
illustration in Fig. 5, bottom).

Finally, the last concept describes an advanced tracklet
management mechanism. Operations such as resampling,
initialization and removal are moved to the tracklet level. On
the one hand, this allows iterating over a fewer number of
tracklets. On the other hand, some processing steps are done in
batches by manipulating individual subsets of particles
belonging to one single tracklet. Specifically, we adopt a faster,
two-level sampling mechanism, including both tracklet and
particle levels. A priority-based mechanism is used to sample
new tracklets from the measurement space, in order to keep the
number of tracklets bounded.

The above proposed concepts provide the following
advantages:

* Less memory consumption: Common grid cell properties
(e.g. semantic label, object ID etc.) can be stored at the
tracklet level instead being explicitly replicated at the
particle level.

» Faster processing: Tracking operations (creation, deletion or
update) work on groups of particles at the tracklet level
instead of processing each single particle individually.

* Increased accuracy: Because each particle is “anchored” to
a fixed sub-set of contour features, we obtain a decreased
effect of “drifting” tracklets and, consequently, more precise
velocity estimation, especially in the case of large objects
described by uniform occupancy values.

* Improved robustness: Having individual particle filters can
help in the cases when only some parts of the grid map
receive new measurements. Only the tracklets that are
associated to those specific measurement cells can be
selectively updated, instead of processing the entire
population of particles.

* Increased flexibility: Having data organized in batches can
facilitate the development on parallel hardware
architectures.
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TABLE I
COMPARISON OF GRID-BASED PARTICLE FILTER SOLUTIONS

Grid-based Particle Filter

(PF) variants Sensors

Occupancy cell estimation Estimated result

[23] Particles for estimating static ~ Stereo-vision sensor
and dynamic cells

[4] Particles for estimating static ~ LiDAR and radar sensors
and dynamic cells

[24] Particles for estimating LiDAR sensor
dynamic cells only

[25] Particles for estimating static ~ LiDAR and radar sensors
and dynamic cells

[26] Particle population is Multi-layer laser scanners and
divided into subsets of static ~ short-range radar sensors
and dynamic particles

[27] Particles for estimating Laser scanners and short-range
dynamic cells only radar sensors

[29] Particles for estimating static ~ Stereo-vision sensor
and dynamic cells

[30] Multiple Rao-Blackwellised ~ Stereo-vision sensor
particle filters for estimating
static and dynamic cells

Proposed Multiple individual Rao- LiDAR, stereo-vision, radar
Solution Blackwellised particle filters

(up to 128000) — self-
localizing tracklets

Number of particles in the cell Particle-based occupancy grid

Dempster-Shafer theory of evidence Dynamic occupancy grid

Extended Bayesian occupancy filter Dynamic Occupancy grid

Dempster-Shafer theory of evidence Dynamic occupancy grid

Dempster-Shafer theory of evidence Evidential dynamic occupancy

grids
Dempster-Shafer theory of evidence Evidential occupancy grid with
radial velocity

Ratio between the number of particles
having a height > T and the total
number of particles in the cell

Particle-based dynamic elevation
map

Binary Bayes Filter for every particle Dynamic occupancy grid with

grayscale intensity information

Dempster-Shafer theory of evidence at
the particle level

Dynamic occupancy grid and
tracklets

The rest of the paper is structured as follows. The next
section gives an overview of existing grid-based particle filter
solutions. Section III describes the overall system processing
flow, the concepts of self-localizing tracklets and multi-channel
grid map estimation. The MLPT algorithm and its main steps
including the tracklet estimation and tracklet management are
described in Section IV. Section V presents the experimental
results, followed by the conclusions in Section VI.

II. RELATED WORK

This section presents an overview of existing grid-based
particle filter solutions, provides a comparison and points out
the limitations.

A first grid-based particle filter solution is introduced by
Danescu et. Al, in [23]. The entire dynamic grid is represented
by a population of particles. Each particle represents an
individual hypothesis which can move from cell to cell. The
particle state is defined by position and speed and is predicted
across the grid depending on its motion model and motion
parameters. Particles are directly associated to grid cells based
on their position and thus contribute to the grid cell’s occupancy
and velocity distribution. The occupancy probability is
described by the number of particles in that cell. The
measurement data used in [23] is a raw obstacle grid obtained
by processing the stereovision-generated elevation map.

Another grid-based particle filter solution is described in [4],
where the dynamic grid map estimation is formulated as a
Random Finite Set problem. Techniques from the field of finite
set statistics like the hypothesis density filter (PHD) and the
Bernoulli filter (BF) are applied to estimate the dynamic state
of grid cells. The Dempster-Shafer theory of evidence (DS) is
then used to update the occupancy state of a dynamic cell. The

used measurement data is obtained by laser and radar sensors.
While solutions proposed in [4] and [23] uniformly estimate the
full space including both static and dynamic components, other
approaches focus on estimating static and dynamic parts
separately [24], [25], [26], [27]. In [24] and [27] the particles
are only associated to dynamic fields. The static infrastructure
is derived by a traditional occupancy grid update mechanism.
Therefore, in [24] a new representation of the Bayesian
Occupancy filter (BOF) is used. Alternatively, in [25] and [26]
the world model is represented by two distinct sets of particles,
i.e., static (particles with zero velocity) and dynamic. In [27],
the static and dynamic occupancies are directly updated by the
map. The authors use dynamic particles only to estimate cell
velocity distributions and to predict the dynamic occupancy
evidence of the map. The input measurements are provided by
laser scanners and short-range radar sensors.

In [29], [30] and [31] the particle state is extended to
incorporate multiple observation cues and adopt various
heuristics to improve data association and processing time.
Depending on the architecture, world model and sensor setup,
the most recent algorithms enrich the particle state with
additional properties like object heights [29], grayscale
intensities [29], [30], patches [30], and object IDs [28], [31].
For example, in [29], the particle state is extended with a new
dimension, the height. The authors in [30] use two grid maps —
an intensity grid and an occupancy grid. The two grids are used
to extract a set of 3x3 rectangular patches. To estimate the state
of these patches, a Rao-Blackwellised solution is used, where
each particle incorporates the intensity and occupancy
information and receives a weight based on how well the
particle patch matches the extracted measurement. Although
the patch-based approach can include the extra appearance



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

Traffic Scene

| Radar I >

Semantic Stixels

MLPT: Multi-Layer
Particle Filter Based
Tracking

Occupancy Grid Channel l

Estimated Dynamic Tracklets

Semantic Grid Channel

Fig. 2. System Overview.

information, it is limited only to the close neighborhood around
a particle and its complexity increases for larger blocks.

Table I summarizes the characteristics of existing particle
filter based methods for estimating dynamic grids, including the
proposed solution.

In summary, existing grid-based particle filters are promising
but come with two limitations. The first limitation is that most
solutions use one population (one multi-modal probability
density) of particles to estimate the state of multiple grid cells
that are considered independent (one cell is described by its own
probability density). A particle can migrate from one cell to
another cell, becoming decoupled from its previous source cell
density and reassigned to a new destination cell density.
Because particles are regrouped into new independent cell
estimators at each iteration, the identity of the tracked cell is
lost. However, this information can be retained if additional
heuristics are used. In other words, the particles can identify the
existence of an object, in general, but not the existence of a
“particular” object part or cell. In order to improve estimation
and data association, the authors in [28], [31] adopt the idea of
linking particles to objects by extending them with object IDs.
It is important to note that the proposed methods still ignore the
cell identities and must remap every particle to every cell.

The second limitation in grid-based particle filters is that the
estimation of cells belonging to large and uniform grid areas are
usually described by higher uncertainty and lower accuracy. For
example, a particle that is predicted in the middle of a larger
object can be attached to any of its occupied cells. This could
lead to ambiguous data association and, in the end, higher
uncertainties. In order to improve the estimation accuracy for
uniform grid areas (i.e. in the middle of large objects with the
same occupancy values), extra features from various sensors,
larger patches, or more particles would be needed.

In the following we present our proposed MLPT solution,
which is designed to overcome the above discussed limitations.

II1.

This section presents an overview of the overall estimation
system and highlights its primary subcomponents as shown in
Fig. 2. The processing pipeline can be divided into three main
steps. In the first step, raw sensor data is acquired by each
sensor interface, preprocessed, and transformed into compact,
medium-level data structures. In addition to measurement
values, each sensor is described by its own measurement model.
Lidar point clouds and stereo vision images are both
transformed into a more compact Stixel-based representation.
The Stixel is a convenient way to model the surrounding
environment as vertically oriented rectangles that can
incorporate properties like position, depth, size and semantic
information of individual object parts [8], [9]. Unlike lidar and
vision Stixels, the radar locations are compressed to a set of pre-
filtered target points, which include the Cartesian position and
velocity. More details about radar sensors and its data
representation is presented in [33].

In the second step of the processing pipeline, compact sensor
measurements are integrated into separate evidence grid
channels. A channel can be defined as an independent 2D grid
representation that accumulates a group of sensor observations,
from one or multiple sensors. In this work, two measurement
grid channels are computed — an occupancy grid channel and a
semantic grid channel. However, it must be noted that the
proposed method can be easily extended with additional grid
channels using gradients or height properties.

The measurement occupancy grid channel is computed by
accumulating the range measurements from all available
sensors during a given fixed time interval. New measurements
are then integrated into the occupancy grid by using the
Dempster-Shafer theory of evidence. Thus, each cell is
described by a belief mass of occupied, free or unknown, and
can be converted into a conventional occupancy probability by
using the pignistic transformation. More details about

SYSTEM OVERVIEW
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Fig. 3. Particles, tracklets and objects that share the same world. The particles
are grouped into tracklets. Every tracklet state is updated with an individual
particle filter, by employing its own particles. For persentation simplicity, the
particle features are not included here, but are presented in the next

image.Subsequent tasks like object clustering, can be performed by using the
multiple estimated tracklets.

measurement occupancy grid calculation is presented in [4].

The measurement semantic grid channel combines the
semantic information provided by both the Stixel world and the
classified radar targets [33]. Every projected object label
identifies a given object class (e.g. pedestrian, bicycle, vehicle
etc.) and has an associated confidence score [9]. Due to memory
constraints, after integrating labels into the semantic channel,
we keep only the top K object labels per cell, based on their
highest accumulated scores, instead of storing a full histogram
of all the accumulated labels per cell.

It is important to note that both measurement grid channels
are described by the same size and resolution. Also, both
channels are aligned in time (the same time interval is used to
integrate input measurements) and space (a given area in world
coordinates is projected into the same cell indices in both grids).

The proposed hybrid particle filter-based estimator is the last
step of the processing pipeline and is described in the following
sections.

IV. DYNAMIC GRID MAP ESTIMATION CONCEPTS

The primary objective of the tracking problem is to estimate
the target’s current state s; from a set of noisy observations z.;
received up to a given time ¢« The tracking problem can be
formulated as a recursive Bayesian estimation process to
estimate the posterior probability distribution p(s¢|Z1.t), by
using the probabilistic motion model p(s;|s;_1) of the target
and a defined measurement model p(z|s;):

p(selz1,) = Wp(ztlst)fp(st|st—1)p(5t—1|zl:t—1)d5t—1 (D

where 17 denotes the normalization constant.

A possible implementation of the Bayes filter update rule
described in (1) can be realized by using a particle filter-based
estimator. In a particle filter algorithm, at each moment in time
t, the posterior probability distribution p(sg|z1.) is
approximated by a set of N individual particles

{(st ,wtl])}L 1.N» Where each particle SE] represents a

hypothesis of the tracked state s; and has an assigned weight

.q[

g |

(x»)

o
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Fig. 4. Particle model. In the example the particle is created for an L-shape
object (gray blob). The particle model is described by its position (x.y) and
four reference object landmarks (blue). The landmarks are selected form the
object contour (light gray). The ellipses represent the landmark covariances.
Although the example presents only one particle assigned to agiven cell (red),
similar particles are initialized in multiple locations, covering the entire object.

Wt['] according to how well the particle matches the
observations.

In general, standard particle filters can be used for solving
various estimation problems described by non-linear motion
models or non-linear measurement processes. Although particle
filters are relatively simple to implement, they are not suitable
for estimating larger states. This limitation comes from the fact
that the number of particles required to approximate the object
state tends to scale exponentially once more parameters are
incorporated into the state s;.

As described in applications like object tracking [6], [16],
[30] or simultaneous localization and mapping [32], a Rao-
Blackwellised particle filter (RBPF) is applied as a common
approach to estimate larger states [34]. The main idea of a
RBPF algorithm is to draw samples only from a part of the state
(e.g. object position and velocity), while the other state
parameters are just carried with particles and are estimated
analytically by using, for example, Binary Bayes filters,
Dempster Shaffer-based updates, or Kalman Filters (one per
particle). In this work we use the same idea of Rao-
Blackwellisation to be able to handle “richer” particles. The
tracking problem is therefore modeled as two decoupled
recursive Bayesian estimations which, in the end, are combined
into one single estimator. The two estimation parts are self-
localizing tracklets and multi-channel grid estimation.

A. Self-localizing tracklets

The main idea of the following proposed concept is to
improve the particle weighting by extending its state with
additional knowledge about object shape. We assume that a
given dynamic grid cell ¢ is part of a larger object hypothesis.
Therefore, apart from its position (x.,y,) and velocity
(Vx,c» Vy,c), @ dynamic grid cell ¢ is also described by its relative
position to K object landmarks Q = {qq,...,qg}. These
landmarks are initialized by selecting a random set of K points
from the same object contour (see Fig. 4). It must be noted that,
in order to take into account, the change in the object geometry,
the relative distances from cells to their selected landmarks
must also be recursively updated, at each measurement
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iteration.

For every newly measured grid cell we create a fixed set of
N particles. This group of particles will represent an individual
particle filter-based estimator — a tracklet h, (see Fig. 3).
Therefore, instead of maintaining and updating one larger set of
particles for the whole grid, we use multiple, smaller,
independent populations of particles organized into tracklets,
(see Fig. 3). A tracklet position and velocity at time # is denoted
by X¢ = [X, Ve, Vs ts Uy, ¢]7. Additionally, the tracklet state is
extended by a unique set Q; of K random landmarks selected
from the same object contour. The tracking problem can be
formulated probabilistically as estimating the following joint
posterior distribution:

P(Xe Q¢lZ1.1) (@)

As in FastSLAM methods [32], tracklet state estimation can
be implemented with a Rao-Blackwellised particle filter [34].
Thus, the joint posterior (2) is factored into independent
estimators as:

P(Xe, QelZ1.e) = D(X¢Z1.)P(QelX¢, Z1.¢)
= p(X¢lz1.p) Hlk{:l P(Qt,klxt' Zl:t) 3

The first distribution p(X;|z4.) in (3) describes the tracklet
position and velocity and is represented by a set of particles.
The remaining factors p(qt,klxt, Zl:t) are the landmark
posterior distributions, which can be marginalized out
analytically, i.e. every particle carries with it K Gaussian
distributions (one per landmark) which are updated with
Kalman Filters [35].

The main motivation of extending the tracklet state with a
fixed set of randomly selected features is the need to improve
the particle-to-measurement matching (see Fig. 4), through a set
of “anchor” points. Intuitively, this leads to an improved
stability in positioning tracklets with respect to a rigid object
shape, therefore in fewer “drifting” tracklets (see Fig. 5). By
making the analogy with the existing SLAM approaches, it also
can be said that the presented tracklets are able to self-localize
themselves with respect to the object boundary. By
incorporating object feature information as part of particle state,
a link between low-level particle world and high-level object
world is created.

B. Multi-channel grid estimation

Multi-channel grid estimation involves integrating the
measurement information structured into two grid channels: an
occupancy grid and a semantic grid.

Similar to the previous section, for every newly measured
grid cell, at time ¢, we define a tracklet as an independent
particle filter-based estimator. Besides its dynamic properties
X;, every tracklet is represented by an appearance vector Ay,
which combines the raw sensor data of the occupancy and
semantic channels. The appearance vector A, is thus completely
described by a belief mass for occupied m{, a belief mass for

free m{ , and a semantic label /;:

A, =[mg,m/, 1] 4)

In the context of Dempster-Shafer theory of evidence, both

masses of occupied m¢ and free m{ can be converted into a

conventional occupancy probability p(o,) by using the
pignistic transformation [37]. Thus, similarly to (3), the tracklet
state estimation is described by a joint estimation problem of its
motion X, and appearance A, and can be written in a factored
form as:

P(Xe, A¢lZy.e) = D(X¢|Z1.)D(AelXp) Z1.p)
= p(X¢|Z1.00P(0¢ X6, Z1.)P (L |X e Z1.4), Q)

where p(X,|z,.;) represents the posterior over tracklet position
and velocity X;, p(0¢|X¢ Z1..), and p(l;|X,, Z1..) are tracklet
occupancy and semantic label posteriors that are conditioned on
its motion X;.

C. Combining the two problems into one estimator

The two decoupled problems described in the previous
section can be combined into one estimator. Therefore, we can
say that a dynamic tracklet h; is fully described by its dynamic
properties X;, appearance A, and a set of object landmarks Qq,
i.e., hy = {x{,A;, Q;}. Consequently, the two update equations
(3) and (5) can be written as a single estimator as:

p(helzy.) = p(Xe, Ap, QelZ1.e)
= p(X¢lZ1.e) P(0|X¢, Z1.¢)
p(Le|X¢) Z1.¢) HII§=1 p(qt,k |xt: zl:t) (6)

To approximate this posterior, we initialize for each
occupied cell a tracklet h, that is described by its position,
speed, landmarks and appearance components. The full
posterior density p(h;|z;,,) of the tracklet h, at time ¢ is
represented by a set of N weighted particles:

{xt 'mt ) t '(qtl' tl) (th' ZELK) 1 @)

Where XEi] represents the position and velocity of a particle,

[t] f:[i]]T

mt = [m{™, m! is the particle mass vector including

both masses for occupied and free, lEi] is the particle semantic

and ZF}{ define the

mean and 2x2 covariance of the k-th landmark (see Fig. 4),
assigned to the i-th sample, fork = 1,...,K,andi =1, ..., N.
For the purpose of implementation, we adopt the concept of
Rao-Blackwellisation, i.e. marginalizing out a part of the state.
That is, each tracklet is specified by a set of particles that are
sampled from the position and velocity. The appearance and
landmark properties are associated with each sample, thus
contributing to a more precise weighting. Fig. 5 presents an
intuitive example about how particle landmarks are used as

label, Wt[i] denotes the particle weight, qﬂ
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Fig. 5. An intuitive example of predicting and weighting one particle (red).
Top: using a particle represented as a point described by a position and
velocity. Bottom: using a particle extended with 4 landmarks (blue ellipses).
In both cases the particle is predicted into the same destination cell. However
it can be seen that, in the top scenario a particle is receiving a higher weight,
because it is confirmed by an occupied cell. In the bottom case, even if the
particle is confirmed by the same measurement, it receives a lower weight, due
to its landmark-to-object misalignment

anchor points to improve the particle weighting. Subsequently
they are updated in closed form at particle level.

V. MULTI-LAYER PARTICLE FILTER-BASED TRACKING

This section describes in more details how the Multi-Layer
Particle Filter Tracking (MLPT) is implemented by taking into
consideration the probabilistic model that was described
previously. At each point in time ¢, the dynamic world is

represented by a fixed list of NV, weighted tracklets hy]:
H, = (b, w1 @®)

Every tracklet hEl] maintains an individual population of
particles (7) and is regarded as a decoupled particle filter
instance with its own prediction and update steps. Although a
tracklet is estimated independently, it is also considered as a
part of a higher level estimation mechanism, at the grid level.

In other words, a tracklet hy] is seen as a meta-particle having

its weight W,[ll] (based on the sum of particle un-normalized
weights) and being created and destroyed by the same particle-
filter specific resampling mechanism. In the following we will
first present in detail how a particle filter is applied locally at
the tracklet level and then, how the population of tracklets,
treated as meta-particles, are managed at the grid level.

A. Particle Filter Based Tracklet Estimation

Once new measurements are received, the following steps
recursively estimate the dynamic state for each tracklet as well
as each grid cell:

1) Initialization: In the initialization, a new tracklet is
created for every new measurement cell. Every tracklet is
described by a set of N particles with random positions around
the measurement cell and random velocities sampled from an
initial distribution. At this step, all particles are initialized with

the same occupancy masses and semantic values that are
received from the corresponding input channels. Additionally,
the new tracklet state is extended with a unique set Q, of K
random landmarks that are selected from an object contour. For
assigning new landmarks, the following pre-processing steps
are performed. First, every new cell must know which object it
belongs to. We perform a pre-clustering step, similar to the
classical connected component algorithm [39], in order to
identify connected components in the measurement grid space.
Every connected component approximates an object candidate
(a blob) identified with a unique ID. Subsequently, every
measurement grid cell stores the ID of its corresponding
connected component. Second, in order to enable the selection
of landmarks from a blob boundary, its contour is extracted by
collecting all the blob cells that have at least one non-occupied
neighbor cell (free cell or unknown). This operation requires
one pass over the measurement occupancies and proves to be
sufficiently fast, especially when the input data is organized in
a compact form (excluding empty cells and including only the
list of measurements pointing to the corresponding 2-D
positions in the grid). Finally, after determining the
correspondences between one possible object, its contour and
its new tracklets are initialized with a fixed set of landmarks.
For every tracklet we first identify a random index i on the
object contour. Starting from that index, the initialization step
selects K landmarks that are uniformly distributed along the
contour. Specifically, a landmark is initialized by every i +
(k — 1) - M/K contour point, where M is the contour length, K
is the number of landmarks, 7 is a random index of the starting
contour point used to select the first landmark, with1 <i < M
and k is the index used to refer to a selected landmark in Q;, for
k=1,..,K.

In the end, different tracklets that are part of the same grid
blob (object hypothesis) will be described by different
combinations of random landmarks that are selected from the
same blob contour. However, all the particles included into one
tracklet will be initialized with the same fixed constellation of
landmarks, pre-selected to describe the tracklet state.

It has to be noted that this procedure does not guarantee that
landmarks are always selected from the same real object.
However, considering that multiple tracklets are spawned for
the same object, these tracklets (including their particles) will
“compete” against each other and, as a consequence, weaker
tracklets and particles will be discarded in a natural way by the
resampling steps (presented further, in the Tracklet
Management sub-section). Additionally, new tracklet
hypotheses, along with their newly selected anchor points, are
always being created and initialized from the latest
measurements, ensuring in this way different hypotheses
adapted to the newest measurements.

2) Prediction: In this step, particles are predicted at a new
position in the grid, by considering the elapsed time, and their
estimated state at the previous particle filter cycle. A constant
velocity motion model is assumed, where the modeling error is
accounted for by perturbing each propagated sample with a
random noise component.
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Fig. 6. Example of a distance map (right), precomputed for the occupancy
grid (left).

Note that landmark prediction is done implicitly by the
particle prediction, as the landmarks are conditioned on the
particle state and follow the motion of the particle.

3) Weighting: Every predicted sample is being assigned a
new importance weight. This step incorporates the information
from the measurement into the particle distribution by giving
weights to particles, which are proportional to the likelihood of
matching the observation.

For a measurement z, at time ¢, and the predicted state from
above s;, the measurement model consists of three components:

a measurement cell likelihood p(z |s ]) a landmark based

likelihood p(zt|st ), and a semantic likelihood p(z§ |s[l]) The
measurement cell likelihood is based on a position error, which
is the distance between the measurement and the closest
particle, while the landmark likelihood depends on the distance
between the particle landmarks and the measurement contours
representing a measure for shape alignment. Furthermore, the
semantic likelihood is defined by a dissimilarity metric given
the particle’s semantics.

In the following, we will refer to these terms as weight
factors, which contribute to the overall particle importance
weight.

If all three likelihood components are independent, the

can be defined as:

')

st)) ©

weight wltl of the i-th particle s}
wlil = p( | [l]) p(zf, VAR

(s (5o e

We use two grids to cache computed distances for speeding
up particle-to-measurement and landmark-to-measurement-
contour association. For computing distance grids, we apply an
algorithm similar to [38]. One grid stores all distances to the
closest occupied points (see Fig. 6) and the other stores all
distances to the closest measurement contours. In addition, each
grid cell stores the position to the closest observation. Based on
these grids, we find d,, as the distance between the i-th sample
and the closest occupied point. Assuming a Gaussian error
model, with a given standard deviation o4, the particle-to-
measurement weight component follows as:

p(zd]s") =

In order to improve the stability in the presence of missed
detections, every particle with a distance to the closest

%
el (10)

measurement larger than a given threshold is updated with a
minimum default particle-to-measurement weight — a weight
corresponding to the likelihood that a measurement was not
observed.

We model an object contour point likelihood given the &-th
particle landmark as:
e gk])z

wll =

ﬁal exp{——, =} (11

where dl[k] represents the distance between the &-th landmark
and its closest contour point defined by the distance map (see
Fig. 6), and o; describes the standard deviation assigned to the
landmark-to-contour ~ distance noise. Assuming error
independence between the total K landmarks, the joint factor

p(z£|s£i]) assigned to the i-th particle can be computed
according to:

p(zi[si") = TT_, wit (12)

As in the case of particle-to-measurement weight component,
every landmark with a distance to the closest contour larger than
a given threshold will be assigned a default minimum
landmark-to-contour weight w!*l. This helps in handling
missed detections, avoids sharp changes in the particle weight
(zero weight in the case of wrong or no associations) and
improves the overall algorithm stability.

For the semantic weight, we first calculate a semantic

dissimilarity metric between the predicted label [, (particle

label) and the associated measurement label [, received from

the closest occupied object cell:

dgy=1-mn" h(lpr ), (13)
where h(ly, L) is a score function that is defined as:
Cl' lp = lm
h(lp, L) =14¢a, either L, or Ly, is unknown  (14)
C3, lp * L,

and 7; is a normalization constant: 1, = 1/(c; + ¢, + ¢3)
having c;, ¢, and c3. The three score values are selected such
that c; < ¢, < ¢;. Considering that the resulting dissimilarity
distance dg is distorted by a Gaussian noise with a given
standard deviation oy, the semantic weight factor can be
calculated according to:

[i] 1
St )_ 2Tmog

4) Appearance and Landmark Updates: In order to update
the particle landmarks, that are defined previously according to
the Rao-Blackwellisation process, we use 2x2 Kalman filters
(one per landmark). The state that is estimated by each Kalman
filter is a 2D position. Moreover, each particle’s mass for

p(z? xp{— = (15)
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occupied mt T and mass for free mf 15 updated with the

associated measurement masses by using the Dempster-Shafer
rule of combination, as also proposed in [4]. For simplicity, the
semantic labels are not updated.

5) Estimation: A weighted average of the particle states is
applied to estimate both the tracklet states and the grid cell
states. The tracklet state is estimated based on its
corresponding particles, even if its particles are projected into
multiple cells. However, for computing the grid cell state, all
particles projected into the same cell are used, regardless of
to which tracklet they belong. In practice, for a better
processing time we directly use tracklets to get the average
cell state.

6) Resampling: We use a Stochastic Universal Resampling
algorithm with linear complexity to resample the particles after
normalizing particle weights for each tracklet. This algorithm
selects a new set of particles from the previous set by taking
their importance weights into account and thus replacing
particles with lower weights. We also adopt a selective
resampling strategy where the particle resampling is triggered
only when the particle diversity is lower than a predefined
threshold [36].

B. Tracklet Management

Theoretically, the number of tracklets can grow above the
available memory limits (more tracklets could be created in
order to describe the tracked objects). While tracklets should be
replicated and removed according to their existence probability,
the maximum number of tracklets should be fixed within a
predefined memory bound. Consequently, measurements need
to be prioritized. This creates a need for a sophisticated
management mechanism. Intuitively, a tracking mechanism
should do the following: initialize new tracklets in new
measurement cells; keep and replicate old tracklets by
resampling as soon as new observations are associated; remove
tracklets when no measurements are associated for a longer
time interval.

The main idea of the proposed tracklet management is that,
at the end of every grid map particle filter iteration ¢ the final
tracklet list Ht is composed of a subset of persistent tracklets

p
Htp _{htp' hp 1 1

tracklets H, , = {h,t b ,Ef},}ﬁvi’lr

and another subset of newly initialized

H, = HtpUth _{htp' hp}l 1U{htb' hb} (16)

The set of persistent tracklets Hy j, is obtained by resampling
from all the surviving tracklets propagated from time t — 1 to
time ¢ The list of newborn tracklets H;) is obtained by

sampling according to a set of initialization weights Wl[ngt
precomputed for each measurement cell ¢ (see Fig. 7).

As long as the number of tracklets does not reach maximum
capacity, newly initialized tracklets are appended to the existing

Measurement occupancy masses: m(Occ)
Particles [ | | | | | I I ]
000000 Selective
Persistent tracklets easenes Resampling  ce|| mass-based intensities: D
C T~ T ~ T3 CT T T T T 7
T

i -
P S . [c]
H Initialization weights: Winit

C T T T T
F 3 newborn

hl! " nl! P . tracklets

t+1,p " t+1by & P 1
[ ‘M"I | I'\’* 3

Tracklet
Resampling

Sampling

Eal

’,;
[ |

Resampled Persistent Tracklets Newborn Tracklets

Fig. 7 Tracklet Management.

list. However, in cases when the maximum memory capacity is
reached, the management mechanism ensures that, through
sampling, the new list of tracklets will have a balanced ratio
between newborn and persistent tracklets. In these extreme
cases, the maximum allowed number of new tracklets is a
parameter of the system and is setup to be less than 20% of the
total available space in the list.

The advanced tracklet management
summarized into several steps.

solution can be

1) Compute Tracklet Occupancy Mass.
The tracklet occupancy mass m,(Occ) can be calculated as
the weighted average of occupancy masses of its particles

m?‘[i]:

my(0cc) = L Wil - mpt! (17
where Wl is the normalized particle weight. The tracklet
occupancy mass (17) is used in the next steps to determine how
well a measured cell ¢ is covered by its underlying tracklets.

2) Compute the cell mass-based intensity
The cell mass-based intensity D, of a cell ¢ is defined as a

sum of all its tracklet occupancy masses m}lc] (Occ).

D, = T mi) (Oce) (18)
where Nj, . denotes the number of tracklets that fall into the cell
c. Intuitively, the mass-based intensity can be interpreted as the
expected number of targets in the cell c. It also provides a

quantitative value about how well a cell is covered by tracklets.

3) Compute the initialization weights

The initialization weights w!! describe how likely it is that

mlt

we have to initialize a new tracklet h,[t into a given cell c. As

these weights have to be proportional to the need of initializing

new tracklets, we determine them for each grid cell ¢ as:
el _ {mC(OCC) —D,, m.(Occ) > D, (19)
fnit = 0 m¢(0cc) < D,

where, m,.(Occ) is the measurement occupancy mass of the cell
¢, and D, is the mass-based intensity defined by (18).
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4) Estimating the number of new and persistent tracklets

Suppose the system memory is limited so that the maximum
number of tracklets that can be created is N;***. Additionally,
the maximum number of newly accepted tracklets is NJ***. Our
goal is to calculate the new numbers for persistent Ny, and
newborn tracklets N, 5, for the next particle filter iteration at
t + 1, given the established memory limitations.

The number of potential newborn tracklets NP’ is
determined by counting all the cells that meet the condition
m.(Occ) > D, in (19). Without memory limitation, new
tracklets would be initialized in all Nf ot grid cells. However,
having the above defined bounds, the number of newborn
tracklets N, , to be used in the next particle filter cycle at time
t + 1 is estimated as:

Nepsp = min(Ny*, max(NJ"™, Novaiianie))  (20)

In the equation above Ng,q4i1apie 1S the number of empty slots
available for adding new tracklets, defined as:
= N — Nyp

@n

Navailable

where N, j, is the total number of tracklets used in the current
particle filter iteration. Finally, the updated number N4, of
persistent tracklets is calculated as:

Niy1p = min(Nep, Ni* = Neyqp) (22)
The total number of all the tracklets at time t + 1, therefore,
is defined as:

Neyin = Neyap + Negap, Where 0 < Neyyp < Np*™ (23)

5) Tracklet sampling

Once the number of persistent N¢4 , and newborn tracklets
Ny 1 is estimated, the updated set of persistent tracklets Hy,q p
[, [i1yNp
t,p’ Wh,p}izl
However, for initializing new

is created by selecting N, tracklets from {h

]
-
tracklets, the method consists of sampling a set of grid cell

indices with a sampling probability proportional to their
assigned initialization weights Wi[,,fgt, where Wi[,ﬂt is previously

calculated according to (19). Finally, the sampled grid cell

according to their weights W’[li

indices serve as the location to initialize new tracklets hH—l,b'

As every tracklet represent an independent particle filter, it
requires a particle-level resampling to avoid degeneracy. The
particle-level resampling, explained in the previous section, is
applied only after the tracklet-level management step. In
addition, we use a selective resampling implementation to
trigger the particle-level resampling only for a subset of
tracklets, when their particle diversity is lower than a given
threshold [36]. It is important to note that the resampling
method is applied once per tracklet ID. If the same tracklet was
replicated multiple times by the tracklet-level resampling, its
particles will be resampled once and then copied multiple times

Resulted Sequence
Metrics

Y

Recorded Estimations Object Level Metrics
D

Ground Truth Y Y

Recompuie with -
different tuning Object level ML: Polynomial
N parameters Metrics Regression
= I
Tuning Parameter
Combinations

Particie Fiiter Sequence Level

;--instances-wf Metrics

— Error model

Fig. 8. Evaluation and parameter tuning pipeline.

TABLE II
COMPARISON BETWEEN DS-PHD [4] AND MLPT (PROPOSED)
DS-PHD MLPT (proposed)
Number of 1 particle filter K filters with M particles each,
estimators with N particles where M < N (e.g. K=128000,
(N=8 Millions) M=50)
Algorithm 1 layer of 2 layers: particles and tracklets
Structure particles
Grid cell Average of all Average of all the tracklets in
estimation the particles in the cell

the cell

Estimated state Position, velocity

and occupancy

Position, velocity, landmarks,
occupancy, semantics

Particle-to-cell Yes Can be ignored. Using tracklet-
regrouping to-cell mapping
Resampling On particle level ~ First — resampling on tracklet

level, then resampling particles
for selected tracklets only

in the replicated tracklets.
V. EXPERIMENTAL RESULTS

In order to evaluate our approach, we use multiple
challenging sequences from real scenarios with provided
ground truth data. The ground truth is manually annotated and
contains different objects (e.g. dynamic and static pedestrians,
vehicles) with various orientation, speed and position.

For comparative results we analyze the tracking errors (see
Fig. 8) obtained with the proposed MLPT approach and with a
similar grid-based tracking solution — the Dempster-Shafer
Probability Hypothesis Density tracking for Dynamic
Occupancy Grid Maps (we will refer to it as DS-PHD) [4].
There are two main motivations for choosing DS-PHD as a
reference algorithm for the comparison. First, it represents a
well-established state-of-the art technique that addresses the
same research problem, i.e., particle filter-based dynamic grid
map estimation. Second, it represents an appropriate candidate
with a similar setup (same sensors, same measurement grid
resolution, same output interface etc.). This enables us to
objectively assess both the proposed MLPT implementation
and the reference DS-PHD in the same fair conditions and on
the same ground-truth data set.

As discussed in previous sections, there are several
conceptual differences between the existing point-based
particle filter estimators and the proposed MLPT approach. The
main differences between DS-PHD and MLPT are centralized
in table II. These conceptual differences are consistent in
comparison with other solutions proposed in the literature [23],
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Fig. 9. MLPT Results for a traffic scenario, including consecutive snapshots sampled over a short period of time. The ego-vehicle is moving straight, and then is
making a left-turning maneuver. Every snapshot includes images showing the vehicle’s surroundings in the following order: front, rear, left and right. Additionally,
every snapshot includes the perceived world and the estimated tracklet. The occupancy and semantic grids are overlayed into one plane. Every tracklet is placed
on top of the grid plane and colored based on its moving direction. The color value indicates the tracklet velocity vector orientation, while the saturation value is

proportional to the velocity magnitude (white for static objects).

(e)

Fig. 10. A traffic scene showing a white vehicle stopping at the crosswalk and
a bicyclist moving in the same direction along with the host vehicle. (a)
Camera image. (b) Estimated dynamic tracklets for both front car and
bicyclist. (c) The weighted particles provided by all the tracklets. Larger
weights are illustrated by higher grayscale intensity. (d) One tracklet and its
features, selected from the tracked bicyclist. For more clarity, the other
tracklets are deactivated. (¢) The same tracklet is illustrated by its weighted
particles (squares) and features (spheres). It can be seen that the particles’
features tend to be clustered around the estimated tracklet features in (d).

[24], [26], [27], [29], [31].

Fig. 9 shows an example with the results of the proposed
MLPT approach for a traffic scenario. The shown example
includes consecutive snapshots sampled over a short period of
time. The estimated dynamic world is represented as dynamic
tracklets. The ego-vehicle is moving straight, and then is
making a left-turning maneuver. Every snapshot presents the
perceived world and the estimated tracklets. Every tracklet is
represented by a speed vector and colored based on its moving
direction.

Fig. 10 presents a scene that includes a white vehicle
stopping at the crosswalk and a bicyclist moving in the same
direction along with the host vehicle. The subsequent images

(a) Traffic light intersection,

i ; (b) Traffic light intersection,
stationary vehicles.

accelerating vehicles.

Fig. 11. A comparison between DS-PHD and MLPT (proposed) for a traffic
light intersection use-case. Top: camera images from the traffic scene. Bottom:
a region of interest extracted from the estimated dynamic grid (top view). (a).
All vehicles are being stopped at the red light. (b) All the vehicles are
accelerating (approximately 9.5 seconds later). The estimations are
represented as a velocity vector field. Each velocity vector is attached to a
dynamic grid cell. A vector color encodes the moving object orientation, while
its saturation and length is direct proportional to the velocity magnitude (white
is used for stationary vehicles).
show comparative examples with the estimated tracklets (Fig.
10.b), all weighted particles sharing the same world (Fig. 10.c),
an example with one selected tracklet and its features (Fig. 10.d)
and an example with the same tracklet represented by its
weighted particles and features (Fig. 10.¢).

Fig. 11 shows a traffic light scenario, with stationary objects
stopping at the red traffic light (see Fig. 11.a) and then
accelerating, which is recorded approximately 9.5 seconds later
(see Fig. 11.b). The example compares the results estimated by
DS-PHD (see Fig. 11.a left and Fig. 11.b left) and the proposed
MLPT (see Fig. 11.a right and Fig 11.b right). In the stationary
case, DS-PHD shows residual velocities, especially in the larger
object (bus), due to a higher ambiguity generated by particles
migrating from one cell to another inside a larger and uniform
object area (sece Fig. 11.a left). MLPT reduces the residual



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 12

Fig. 12. A traffic scene showing a pedestrian crossing in front of the ego
vehicle from left to right. Top: image snapshots from the corresponding traffic
scene. Bottom: A part of estimated dynamic grid in the proximity of the ego-
vehicle (top-view). The dynamic grid result shows a crossing pedestrian (green
arrows). Additionally, the estimated grid includes the projection of two
adjacent cars represented with white dots (not visible in the top camera
images). The ego vehicle, as well as the other two left and right cars are
stopped at the traffic light. It can be seen that as soon as the crossing pedestrian
passes closer to the static obstacle (in front of the right vehicle), some of the
pedestrian velocity vectors are temporarily biased by the wrong associated
measurements belonging to stationary vehicle.

velocities by using landmarks to stabilize the particle-to-
measurement matching (see Fig. 11.a right). As illustrated in
the Fig. 11.b right, particle “anchor” points also improve the
estimation of dynamic cells, especially in the middle of larger
objects, as opposed to simple particles (without landmarks) that
tend to provide reliable velocity vectors only in front of the
accelerating bus (see Fig.11b left). Subsequently this leads to
an improved algorithm convergence, as illustrated in Fig. 15,
right (the comparison between the velocity graphs estimated for
an accelerating object).

However, one has to note that estimated grid velocities can
still be temporarily biased, especially when the tracked objects
are close to each other. For example, Fig. 12 shows a traffic
scene situation with a pedestrian crossing in front of the ego
vehicle from left to right. The dynamic grid result illustrates the
crossing pedestrian (green arrows). Additionally, the estimated
grid includes the projection of two adjacent cars represented by
white dots (white arrows which appear as dots due to the zero
velocity of the two stationary vehicles). As soon as the crossing
pedestrian passes in front of the right vehicle, some of
pedestrian’s velocity vectors are biased towards the stationary
car. This is explained by the fact that some of the dynamic
particles, including their anchor points are incorrectly
associated to the measurements corresponding to the stationary
vehicle. Although these particles are described by a lower
weight and, subsequently, are more likely to be removed by the

A,

* grd. DOV

resampling mechanism, they still might lead to temporarily
inaccurate estimated tracklets.

A. Parameter Tuning and Error Model Estimation

To perform a quantitative evaluation of both approaches, we
introduce a parameter tuning framework (see Fig. 8) that
determines the optimal parameter values for the given tracking
algorithms. The proposed parameter tuning framework
executes the given algorithm multiple times on the same
reference sequence with a different combination of tuning
parameters. The reference sequence describes a real traffic
scenario and includes manually annotated ground truth objects.
Each ground truth object is represented by a box and includes
object semantics (vehicle, pedestrian, etc.), position, velocity
and size.

There are two goals we hope to achieve through evaluation.
One goal is to see how the accuracy metrics are evolving based
on different tuning parameters. Another goal is to find the best
combination of the tuning parameters that provide the highest
estimation accuracy. The tuning parameters used were:
standard deviation for matching features; occupancy mass
decay factor (persistence probability) when no measurements
are associated to particles; velocity process noise (standard
deviation of the velocity noise); process noise for initializing
new particles (standard deviation used to sample the
initialization velocity). The permutations of tuning parameters
are predetermined by either uniformly sampling from a domain
of values or manually selecting from desired values. At each
iteration, the evaluation process runs on the same ground truth
sequence but with different instances of tuning parameters.
Every permutation of tuning parameters is then stored as a
separate instance.

The framework computes respective metrics for each
iteration such as the sequence mean absolute error (MAE), root
mean squared error (RMSE) and the standard deviation
(StdDev) for speed and distance estimation. Our goal is to find
a model which describes this error in the continuous space as a
linear function of tuning parameters with the subset of discrete
error values. To find this error model, we use a linear
regression, where tuning parameters (features) estimate
velocity mean absolute error €, € R (target values). The error
model is approximated by a quadratic polynomial function
f:R™ - R defined as:

& = f(pO' P1 "'rpn)

= Wo +Wip§ + -+ Wipi1DE 4 WnioDo + - + WoniaPn, (24)

Fig. 13. Estimated Error Model. The examples show how the Velocity MAE is varying depending on different tuning parameters such as: StdDev of longitudinal
velocity vs. StdDev of initial particle velocity (left), StdDev of initial particle velocity vs. StdDev of measurement featrues (middle) vs Persistence Probability.
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TABLE III
QUANTITATIVE RESULTS DS-PHD [4] AND MLPT (PROPOSED)
DS-PHD MLPT (proposed)
Number of particles 8M particles 10K tracklets, 10K tracklets,
50 particles/tracklet 128 particles/tracklet
Metric MAE StdDev MAE StdDev MAE StdDev
With the tuning parameters used before optimal parameter tuning
Velocity 0.82 0.94 0.67 0.53 0.56 0.35
Distance 0.38 0.02 0.46 0.02 0.47 0.016
With the best tuning parameters

Velocity 0.65 0.51 0.546 0.42 0.474 0.788
Distance 0.38 0.02 0.24 0.02 0.46 0.02

. . case of DS-PHD. Specifically, the picture shows how the Mean

Initiall . . . .
= soleted Absolute Velocity (MAE) error is varying with respect to
= gasy PerIMEter . C e 1 . .
g5 parameter = iy, different distributions to initialize new particles (left), or with
—” value ‘1 ‘.i.‘,l I 11 . . . .

58 ‘ o I_:g;g UHHIIRHERE respect to selected process noise (in this case velocity standard
g& = ol ! .. . . . ..
5 - deviation) that is used in the particle prediction. In both charts
1] o o od . o, . .
5 . -y —— - e §bst pararmeter we show the initially selected tuning parameters and the best

s u value

W Fry O s

Std. Dev. Initial Velocity Velocity Process Noise

Fig. 14. DS-PHD [4] Tuning Parameters vs. Estimated Velocity Error. Left:
the picture shows how the Mean Absolute Velocity (MAE) error is varying
when selecting different distributions to initialize new particles. Right: the plot
shows how the same velocity error is changing with respect to selected process
noise (in this case velocity standard deviation) that is used in the particle
prediction. In both figures we show the initially selected tuning parameters
and the best tuning parameters, estimated after analyzing the evaluation results
over different combinations of parameters.

where wy, ..., W42 € R are the coefficients of the polynomial
determined by the linear regression, py, ..., p,, € R are the tuning
parameters, and n is the number of tuning parameters.

From (24), the optimal tuning parameters correspond to those
arguments py, ..., P, for which the error &, function is minimum.
The same parameter tuning procedure was applied for both DS-
PHD and the proposed MLPT solution.

Fig. 13 shows the estimated error model in the case of the
MLPT algorithm. It can be observed how the velocity error
surface is changing depending on different parameter
combinations and parameter values.

Fig. 14 illustrates similar example with the error model in
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tuning parameters, estimated after analyzing the evaluation
results over different combinations of parameters.

B. Evaluation with provided ground truth data

The main objective of this phase was to evaluate both
particle-filter grid map tracking solutions by using the ground
truth sequences.

Fig. 15 presents a comparison between the estimated velocity
for MLPT and DS-PHD in a scenario with manually annotated
targets. The evaluation was done only on specific selected
objects, in order to see how the estimated velocity of a given
target is evolving in time. The left image shows the bounding
boxes provided by the ground truth and the estimation result of
MLPT. The other two images present the result of the velocity
estimation of both algorithms (MLPT: blue, DS-PHD: orange)
compared to the ground truth velocity (green). The example
graphs correspond to an almost stationary pedestrian (central
image) and an accelerating car (right image). As previously
described in the Fig. 11, it can be seen that MLPT converges
faster and closer to the ground truth value. However, it also

Velocity GT, estimated by MLPT and PHD-DS for Object ID: 3
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Fig. 15. Evaluating the MLPT and DS-PHD on individual objects from the ground truth sequence (left image). Each individual diagram represents the estated
velocity for one single ground truth object (green line). The MLPT results is shown with blue. The DS-PHD estimation is illustrated with yellow line.
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TABLE IV
COMPARISON BETWEEN DS-PHD [4] AND MLPT (PROPOSED)
BY USING MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

Velocity Range 1-3 m/s 3-7m/s > 7 m/s

DS-PHD 21.05 % 14.9 % 10.3 %

MLPT 20.1 % 14.6 % 11.6 %
(proposed)

shows that MLPT is described by a higher estimation variance
than DS-PHD.

Table III centralizes the mean absolute error (MAE) and
standard deviation (StdDev) for the velocity and distance
estimation using the two methods. The error metrics are
calculated for the entire sequence by considering all the
estimated objects. For MLPT we performed two different
evaluations — with 50 particles per tracklet, and 128 particles
per tracklet. Moreover, for both algorithms we include an
evaluation based on initially tuning parameters, and another
evaluation based on the best tuning parameters. Consequently,
MLPT provides more accurate estimation with slightly higher
variances in some cases.

Table IV compares both algorithms’ accuracy by calculating
the Mean Absolute Percentage Error (MAPE) for the estimated
object velocity. The estimation accuracy was calculated for
three different velocity ranges: 1 — 3 m/s, 3 — 7 m/s and above
7 m/s. It can be observed that the obtained percentage errors are
higher for targets moving at lower velocities (1-3 m/s). This is
due to the normalization of the estimated velocity by a lower
ground truth velocity. In case of the velocity ranges 1 — 3 m/s
and 3 — 7 m/s MLPT provides a higher accuracy than DS-PHD.
At higher object velocities (> 7 m/s) DS-PHD achieves better
results. The better performance of MLPT at low speeds (like
traffic light intersection scenarios) where accelerating and
decelerating objects are more frequent, can be explained by the
faster convergence towards the ground truth value.

C. Processing time on a GPU implementation

Key steps in the inner-loop of the proposed algorithm were
partially optimized in CUDA; other steps such as the use of
distance transform to generate intermediate data structures that
speed up associating features to measurement and the
management of tracklets were left on the CPU. These steps are
still un-optimized and are still an area of active research from
the point of view of functionality in relation to the proposed
algorithm and of implementation techniques for optimal
performance. Fig. 16 shows the performance for a
parametrization of 128K tracklets, 128 particles per tracklet and
3 features per particle. The size of the measurement grids is
1232x1232 cells, where each cell covers a 0.13x0.13 m region.
The algorithm is executed on a Nvidia 1080Ti GPU platform.
The graphs presented in Fig.16 are summed up durations in
milliseconds of the operations on GPU for predicting particles
using linear motion (4.2ms), associating features to

20

0 10 20 30 40 50 60 70
iteration
—— particle prediction
—— measurement update - feature to measurement association
—— measurement update - particle weighting
tracklet state estimation

Fig. 16. Performance of the main steps of the MLPT algorithm.

measurements (7.8ms), weighting particles (3.9ms) and
estimating the state of the tracklets (3.9ms). The total average
duration of all steps is 19.9ms.

VI. CONCLUSIONS

In this paper we presented a novel particle filter solution and
introduced important concepts to track dynamic grid maps. The
main motivation of the work was to address existing challenges
in the field of grid map estimation and object tracking, in
general. The problem of combining various sensor
measurements was addressed by a multi-layer particle filter-
based tracking approach (MLPT). Information like occupancy,
object semantics, or shape was used to estimate the object state
via Bayesian update mechanisms. Instead of using one particle
filter for estimating the entire grid, we employ multiple
individual particle filters, organized into tracklets that share the
same world. By having tracklets in place, various particle filter-
related steps like initialization or sampling were performed at
the tracklet step. This offered the advantage of working in
batches of particles instead of iterating over every single
particle. Another important concept was “self-localizing”
tracklets. Like simultaneous localization and mapping
approaches, in our tracking solution every particle state is
extended with a small set of landmarks that are randomly
selected from the object contour. Intuitively, this idea was
adopted in order to decrease the effect of “drifting” tracklets
and, consequently, to obtain a more precise velocity estimation.

Although this work aimed to provide a more stable
environment estimation by using “anchored” tracklets and
particles via landmarks, further work can address better method
variants to detect, select and manage these landmarks as well as
to reduce the ghost velocities by using, for example, static map
information, similarly to [27].

The experimental results with the ground-truth data illustrate
that MLPT can estimate the dynamic world with a higher
accuracy than previous methods. Although having richer
particles contributes to more accurate results and a more
comprehensive understanding of the world, this comes at a cost
of having more complex structures and intermediate data
representations. Incorporating additional features as part of the
particle is a new topic that requires more focus in future
research.
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