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Obstacle Localization and Recognition for Autonomous Forklifts
using Omnidirectional Stereovision

Arthur D. Costea, Andrei Vatavu and Sergiu Nedevschi

Abstract— In this paper we propose an approach for obstacle
localization and recognition using omnidirectional stereovision
applied to autonomous fork-lifts in industrial environments. We
use omnidirectional stereovision with two fisheye cameras for
the 3D perception of the surrounding environment. Using the
reconstructed 3D points, a Digital Elevation Map (DEM) is
constructed consisting of a 2.5D grid of elevation cells. Each cell
is then classified as ground or obstacle. Further, we use the
classified DEM to generate obstacle hypotheses. To ensure a
higher detection rate we also propose a fast sliding window
based approach relying on the monocular fisheye intensity
image. The detections from both approaches are merged and
are subjected to a tracking mechanism. Finally each obstacle is
classified using boosting over Visual Codebook type features.
The classification is refined using the classification history
available from tracking. The presented approaches are
integrated into a 3D visual perception system for AGVs and are
of real time performance.

1. INTRODUCTION

Automated guided vehicles (AGVs) are more and more
encountered in industrial environments. The use of AGV
fleets has been analyzed in [1-5] and appears to be an
efficient solution for modern industrial environments. Their
use can play an important role in the efficiency of factory
logistics which is still a bottleneck in production and
packaging of mass products. They are a flexible, cost
effective and safe solution for increasing the automation of
factory logistics [S]. Forklift AGVs are able to pick up and
deliver autonomously pallets with different type of goods.

In an industrial environment shared by humans and
multiple AGVs the surrounding perception by AGVs is
crucial. Each AGV has to be able to recognize the
surrounding obstacles for path planning and collision
avoidance. Most common sensors for AGVs are laser
scanners that provide 2D perception of the environment.
Stereovision based perception can provide a more complex
3D understanding of the environment and recognition of
obstacles.

There are several solutions for stereovision based
perception. Some approaches focus on direct processing of
each 3D point. For example, in [6] the authors propose a 6D
vision approach based on tracking each individual 3D point
using a GPU optical flow solution. In order to handle the
real-time requirements, various compromise solutions were
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Fig. 1. Multiple AGVs in a warehouse.

proposed to reduce the size of the stereo data and to ensure
high perception accuracy. These solutions mostly use an
intermediate representation for sterco data such as Digital
Elevation Maps (DEM) [7], [8] or Occupancy Grids [13],
[14]. DEM can be regarded as an improved grid-based
representation where, beside the occupancy value, each cell
is also described by its height information. Compared to
other environment modeling solutions, this type of
intermediate representation is more suitable for crowded
environments. The resulted compact 2.5D model can be
easily used by the subsequent processing steps that need both
high accuracy and high performance. For example, in [8] the
authors use DEM based representation for determining the
traversable terrain and detecting obstacles in off-road
scenarios for autonomous ground vehicles.

For AGVs in crowded industrial environments (see Fig.
1) there is a high need to perceive the entire surrounding
world. Based on our previous work [11], in this paper we
propose an omnidirectional stereovision system for the
localization and recognition of obstacles. We use fisheye
cameras [10] for 360 degree depth perception. The 3D point
cloud obtained from stereo reconstruction is transformed into
an intermediate digital elevation map based representation
[11], [12]. We use the classified digital elevation map to
generate obstacle hypotheses. Considering the higher risk of
pedestrians, we employ an additional sliding window based
approach, trained specifically for pedestrian detection. This
way, pedestrians are detected both from stereo and also from
monocular vision. Using a list of obstacle hypotheses we
track each of the obstacles. For each obstacle we obtain
speed and direction. Finally the obstacles are classified as:
pedestrian, AGV, large obstacle, small obstacle. Tracking
allows obtaining a class history for each obstacle that can be
further used for classification refinement. An overview of the
proposed obstacle recognition process is given in Fig. 2. We
have evaluated the proposed obstacle recognition approach
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Fig. 2: Object recognition process

in an industrial warehouse environment with multiple AGVs
and pedestrians. The approach has been integrated into a
perception system and is running in real-time on fork-lift
AGVs.

II. OMNIDIRECTIONAL STEREOVISION

In our work we use the omnidirectional stereovision
system proposed in [11]. The system uses a pair of fisheye
lenses [10] mounted over the fork-lift AGV at a height of 4.5
meters as seen in Fig. 3.a. The cameras are faced downward
and provide a horizontal Field Of Vision (FOV) of 360
degrees. The longitudinal FOV (in driving direction) is of
150 degrees and the transversal FOV is of 100 degrees. The

¢)

area of interest is an ellipsoid cone with the radius of 11
meters and 4 meters.

Multi-channel rectification [11] is used to obtain three
rectified image pairs from the fisheye image pair. A GPU
based implementation of the stereo reconstruction proposed
in [16] is used to obtain a 3D point cloud of the surrounding
environment. The 3D points are used to construct a DEM
[11], [15] a 2D grid of heights. The classified DEM is
obtained by labeling each cell as “ground” or “obstacle” and
is used to generate a set of obstacle hypotheses.

III. OBSTACLE DETECTION

We use two approaches to generate obstacle hypotheses.
The first technique consists in the grouping of DEM obstacle
cells into connected blobs (clusters). The second one is a fast
sliding window based approach using monocular vision.
Both methods generate a list of object candidates, each
hypothesis being described by two models: a 3D cuboid and
a free-form polygonal model. The 3D boxes are used for
defining the region of interest for the object classification
step, while the free-form polygons are used in the tracking
stage.

A. Obstacle Detection from Classified DEM

At this stage, the DEM cells classified as “object” are
grouped into individual clusters. The grouping process is
performed in 2D by using the projection of the Elevation
Map cells on the ground plane. The spatial proximity
criterion between DEM cells is used to determine the
connected entities. For each separate group of cells an
oriented bounding box is determined.

Fig. 3: Omnidirectional stereovision using fisheye lenses mounted on an AGV and the stereo frames. a) System setup. b) Stereo pair of
fisheye images. c) Left grayscale image and the elevation map projected on the left image. d) The 3D view representation including the
elevation map. The points are classified as Ground (blue) or Object (red).
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B. Sliding window over fisheye image

Considering the higher importance of pedestrians due to
their vulnerability we use another approach for their
detection. This approach is based on monocular vision and is
independent from the stereo based elevation map. We use a
sliding window directly over the fisheye intensity image in
order to detect pedestrians. We observed that the size of
pedestrians changes only slightly over the distance from
camera. However, the orientation of the pedestrian changes
with its position relative to the camera. Considering that the
pedestrian orientations are symmetrical with respect to the
image center, a solution would be to rotate each individual
detection window before -classification, but at a high
computation cost. A more efficient solution is to train a
classifier with a larger training dataset, consisting of
pedestrians at multiple orientations. For the training dataset
we used scenarios with multiple pedestrians walking around
the AGV at different distances and orientations. We applied
additional rotations over the extracted pedestrians to extend
the dataset.

In our experiments we used a 80 x 80 pixel size detection
window. The image is scanned densely with a step rate of 4
pixels over the fisheye frame. The fisheye frame is resized to
512 x 512 pixels. Due to the small scale change of
pedestrians in the fisheye image, we are able to use only a
single detection window scale. In order to classify a
detection window as pedestrian or non-pedestrian, we follow
the Aggregated Channel Features (ACF) based detection
approach proposed by Dollar et al. in [18], 8 image channels
are computed for the fisheye intensity frame: one channel for
grayscale intensity, one for gradient magnitude and 6 for
oriented gradient magnitudes (using six orientations). 8
aggregate channels are obtained by computing an average for
4 x 4 pixel cells. The resulting channels have a size of 128 x
128 pixels. The classification of the sliding windows is
achieved using the aggregated channel features with a
boosting classifier. The boosting classifier uses 2048 two
level decision trees.

For each 2D detection from the fisheye frame we
estimate a 3D cuboid. We map each reconstructed 3D point
to the fisheye frame and compute a median for the points that
are mapped in the 10 x 10 pixel region in the center of the

c) d)
Fig. 4. 2D Sliding window based 3D cuboid estimation: a) Left image; b) 2D sliding window detection results (green) and the
reconstructed 3D points projected on the left image (red); ¢) Estimated 3D cuboids in the left image; d) 3D cuboids in 3D space

detection window. The median 3D point is projected on the
ground plane and a 0.5 x 0.5 x 2.0 meter cuboid is generated
in 3D over that point, as seen in Fig.4. These obstacles,
together with the previous obstacles, are merged into a single
obstacle list.

C. Obstacle Representation with Attributed Polygonal
Models

For each object hypothesis described by a 3D cuboid , we
also extract an attributed polygonal model (see Fig. 5) which
provides a better object approximate with a small subset of
points. The free-form polylines are computed by adapting the
BorderScanner algorithm previously developed in [9]. The
main idea is to extract an object model by selecting the most
visible (not occluded) parts from the camera position. This is
achieved by using a scanning axis which extends from the
observation point and moves in a radial direction with fixed

Fig. 5: Top: detected objects represented as 3D oriented boxes. Bottom: the
free-form polygonal representation.

Preprint submitted to 2015 IEEE Intelligent Vehicles Symposium.
Received January 29, 2015.



CONFIDENTIAL. Limited circulation. For review only.

steps. At each step, the most visible cell that is classified as
object is marked as a delimiter cell. The extracted contours
are used to compute polygonal structures so that each
individual DEM cluster is described by a separate free-form
polygonal representation (see Fig. 5, bottom).

IV. OBSTACLE TRACKING

The object tracking (see Fig. 6) consists in estimating,
recursively in time, the object state given all observations up
to the present time ¢. The tracking technique can be divided
into two separate stages: motion estimation and filtering. The
motion estimation approach takes into consideration the
previously extracted delimiters. For each associated contour
pair that identifies the same object in the consecutive frames
we compute an optimal translation 7 and rotation R that
minimize the alignment error. For this we use the Iterative
Closest Point (ICP) approach, previously presented in [17].
According to the ICP technique, each obstacle can be
described by two set of points: a model set {p.,p, ..., pu}
that defines the obstacle contour in the previous frame, and a
data set {g1,q>, ..., gk} that defines the obstacle contour in the
current frame. The optimal transformation is estimated by
minimizing the following objective function:

sRT)=Y|Ro, + T~ g (1)

where N represents the number of point-to-point
correspondences (p; ,g:). In order to stabilize the results, the
object positions and the extracted speed vectors are
subjected to a standard Kalman filtering technique.

V. OBSTACLE CLASSIFICATION

Having a list of tracked obstacles, our goal is to classify
each of them based on visual features. We use three main
classes: Pedestrian, AGV, Other obstacle. The obstacles are
represented as 3D cuboids. We have to obtain a 2D image in
order to compute visual features. This is obtained by
projecting the 3D cuboid into the fisheye frame and cropping

Fig. 6: Object tracking. a) Each object is labeled with a unique ID (different
color). b) The trajectories of the dynamic obstacles (top view).

it out as a rectangular image. Considering the nature of the
fisheye image, the image is radially symmetrical with respect
to the image center, as it can be seen in Fig. 7. The obstacles
that are exactly in the front of the AGV, are oriented
upwards. We compute the angle with longitudinal axis as
illustrated in Fig. 7.a and rotate the obstacle with this angle.
This way the obstacles will be always oriented upwards (see
Fig. 7.b). In order to obtain scale invariance, the 2D images
of the obstacles are resized to have a fixed height of 100
pixels if the height is greater than the width or to a fixed
width of 100 pixels otherwise. The aspect ratio is not
changed during the resizing. We use this image for
computing visual codebook based features.

A. Classification feature computation

Visual codebook or bag of features based classification is
a popular approach used for general image classification
[19], [20] or image segmentation (pixel classification) [21].
In our previous works [22] and [23] we managed to adapt
their use for real-time applications.

We employ a HOG type local descriptor that we used
also in [22] and [23]. The local descriptor can be computed
in any position of the image and describes a 16 x 16 pixel
neighborhood with a descriptor vector. The pixel
neighborhood is partitioned into 4 cells of 4 x 4 pixels. For

c)

Fig. 7: 2D image generation for a 3D cuboid: a) obstacle angle with respect to the longitudinal axis; b) 3D cuboids; c) resulting 2D
images after cropping and rotation.
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Fig. 8: The 25 image regions used for histograms of visual words.

each of these cells we compute a histogram of oriented
gradients using 6 orientations (an increment of 30 degrees).
The 4 histograms are concatenated and result in a 24
dimensional descriptor vector.

We select a training set with obstacle images. Around
1000000 descriptor vectors are sampled randomly. We apply
K-means clustering over the samples with K=100. The 100
resulting centroids build up the visual codebook.

After training a codebook, any local descriptor vector can
be matched to the closest visual word (centroid) from the
codebook in Euclidean distance. In order to extract the
classification features for an obstacle image, we compute the
local descriptors densely, at each pixel position. Each of the
computed local descriptors is matched to the closest
codebook word. We propose 25 image regions obtained
from 5 different partitionings: 1x1, 1x2, 2x1, 2x2 and 4x4
(see Fig. 8). We use as classification features the histogram
of visual words in those regions. 25 regions and codebook of
100 words result in 2500 features for an obstacle.

B. Obstacle classification

We use two binary classifiers for AGVs and pedestrians.
The obstacles that are not classified as AGV or pedestrian
are classified as “large other obstacle” if the obstacle is
higher than 50 cm or “small other obstacle” otherwise. We
need to train each binary classifier with a training dataset
consisting of positive and negative samples using the
previously defined 2500 classification features. We use Ada-
boost [24] with 2048 rounds and two level decision trees as
weak learners. Using the learned classifier models any
obstacle can be classified based on the visual codebook
based features. If an obstacle is classified positively by both
classifiers, then we choose the class label with the highest
probability estimate.

Due to obstacle tracking we have access to a
classification history. If an object is tracked for more than 5
frames, we take into consideration the last 5 classifications
and apply majority voting. This way we are able to filter out
temporary false classifications.

C. Detection fusion

We have proposed two different detection approaches for
proposing obstacles hypotheses. Pedestrians can be detected
by both approaches. We consider that two 3D cuboids are
overlapping if the ratio between the intersection volume and
the unified volume is more than 50%. In case of overlapping
detections we retain the obstacle with the highest
classification probability.

VI. EXPERIMENTAL RESULTS

The proposed solution was implemented and integrated
into a visual perception system in the framework of FP7 EU
PAN-Robots project [25]. The system runs at 10
frames/second on a GPU equipped industrial PC that was
mounted on a forklift AGV. Fig. 9 illustrates some obstacle
classification results in industrial warehouse environments.

In order to train and evaluate the obstacle classifiers we
created an obstacle database consisting of 2287 pedestrians,
454 AGVs and over 20000 other obstacles. We used 75% for
training and 25% for evaluation. In Table I we provide the
classification accuracy and precision for each of the classes.

The DEM based detection approach is a generic obstacle
detection technique based on grouping cells classified as
objects, while the sliding window based approach focuses
only on pedestrians. For being able to evaluate the
recognition rates of each individual obstacle detection
approach, as well as to compare them with the proposed
combined solution we setup the following scenario. A
ground truth sequence was created with a high number of
pedestrians including different challenging situations. The
scenario includes dynamic pedestrians, grouped pedestrians,
different occlusions cases and all seen from different
distances and angles, from standing or moving AGV. Over
2000 frames were manually annotated resulting in 7793
ground truth pedestrians. Table II show the recall and
precision rate for each approach. It can be noticed that the
proposed combined solution in this work provides a
significant increase in detection rate.

TABLE 1
OBSTACLE CLASSIFICATION EVALUATION
CLASS RECALL PRECISION
Pedestrian 95 % 94 %
AGV 85 % 80 %
Other 92 % 93 %
TABLE I
DETECTION RATE EVALUATION
APPROACH RECALL PRECISION
Sliding Window 78 % 96 %
DEM 85 % 97 %
DEM + Sliding Window 93 % 94 %
VII. CONCLUSIONS
In this paper we proposed an omnidirectional

stereovision system for the localization and recognition of
obstacles. In order to perceive the surrounding world, the
presented solution employs fisheye cameras for 360 degree
depth perception. First, the reconstructed dense stereo data is
mapped into an intermediate classified elevation map. Then,
a set of obstacle hypotheses are generated by grouping the
object cells from the elevation map. Taking into account the
higher risk of pedestrians, an additional sliding window
based solution is used to detect in particular pedestrians. The
generated list of candidates by both approaches is subjected
to a tracking mechanism. Finally, the resulted set of trackers
is classified as: pedestrian, AGV, large obstacle. The
proposed combined approach in this work proves to be
efficient in terms of detection accuracy and precision.
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Fig. 9: Obstacle classification in different scenarios: Red — AGV, Green — Pedestrian, Blue — Other obstacle
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