
  

 
 

Fig. 1. Multiple AGVs in a warehouse. 
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Abstract— In this paper we propose an approach for obstacle 

localization and recognition using omnidirectional stereovision 

applied to autonomous fork-lifts in industrial environments. We 

use omnidirectional stereovision with two fisheye cameras for 

the 3D perception of the surrounding environment. Using the 

reconstructed 3D points, a Digital Elevation Map (DEM) is 

constructed consisting of a 2.5D grid of elevation cells. Each cell 

is then classified as ground or obstacle. Further, we use the 

classified DEM to generate obstacle hypotheses. To ensure a 

higher detection rate we also propose a fast sliding window 

based approach relying on the monocular fisheye intensity 

image. The detections from both approaches are merged and 

are subjected to a tracking mechanism. Finally each obstacle is 

classified using boosting over Visual Codebook type features. 

The classification is refined using the classification history 

available from tracking. The presented approaches are 

integrated into a 3D visual perception system for AGVs and are 

of real time performance.  

I. INTRODUCTION 

Automated guided vehicles (AGVs) are more and more 
encountered in industrial environments. The use of AGV 
fleets has been analyzed in [1-5] and appears to be an 
efficient solution for modern industrial environments. Their 
use can play an important role in the efficiency of factory 
logistics which is still a bottleneck in production and 
packaging of mass products. They are a flexible, cost 
effective and safe solution for increasing the automation of 
factory logistics [5]. Forklift AGVs are able to pick up and 
deliver autonomously pallets with different type of goods. 

In an industrial environment shared by humans and 
multiple AGVs the surrounding perception by AGVs is 
crucial. Each AGV has to be able to recognize the 
surrounding obstacles for path planning and collision 
avoidance. Most common sensors for AGVs are laser 
scanners that provide 2D perception of the environment. 
Stereovision based perception can provide a more complex 
3D understanding of the environment and recognition of 
obstacles. 

There are several solutions for stereovision based 
perception. Some approaches focus on direct processing of 
each 3D point.  For example, in [6] the authors propose a 6D 
vision approach based on tracking each individual 3D point 
using a GPU optical flow solution. In order to handle the 
real-time requirements, various compromise solutions were 
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proposed to reduce the size of the stereo data and to ensure 
high perception accuracy. These solutions mostly use an 
intermediate representation for stereo data such as Digital 
Elevation Maps (DEM) [7], [8] or Occupancy Grids [13], 
[14]. DEM can be regarded as an improved grid-based 
representation where, beside the occupancy value, each cell 
is also described by its height information. Compared to 
other environment modeling solutions, this type of 
intermediate representation is more suitable for crowded 
environments. The resulted compact 2.5D model can be 
easily used by the subsequent processing steps that need both 
high accuracy and high performance. For example, in [8] the 
authors use DEM based representation for determining the 
traversable terrain and detecting obstacles in off-road 
scenarios for autonomous ground vehicles. 

For AGVs in crowded industrial environments (see Fig. 
1) there is a high need to perceive the entire surrounding 
world. Based on our previous work [11], in this paper we 
propose an omnidirectional stereovision system for the 
localization and recognition of obstacles. We use fisheye 
cameras [10] for 360 degree depth perception. The 3D point 
cloud obtained from stereo reconstruction is transformed into 
an intermediate digital elevation map based representation 
[11], [12]. We use the classified digital elevation map to 
generate obstacle hypotheses. Considering the higher risk of 
pedestrians, we employ an additional sliding window based 
approach, trained specifically for pedestrian detection. This 
way, pedestrians are detected both from stereo and also from 
monocular vision. Using a list of obstacle hypotheses we 
track each of the obstacles. For each obstacle we obtain 
speed and direction. Finally the obstacles are classified as: 
pedestrian, AGV, large obstacle, small obstacle. Tracking 
allows obtaining a class history for each obstacle that can be 
further used for classification refinement. An overview of the 
proposed obstacle recognition process is given in Fig. 2. We 
have evaluated the proposed obstacle recognition approach 
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in an industrial warehouse environment with multiple AGVs 
and pedestrians. The approach has been integrated into a 
perception system and is running in real-time on fork-lift 
AGVs. 

II. OMNIDIRECTIONAL STEREOVISION 

In our work we use the omnidirectional stereovision 
system proposed in [11]. The system uses a pair of fisheye 
lenses [10] mounted over the fork-lift AGV at a height of 4.5 
meters as seen in Fig. 3.a. The cameras are faced downward 
and provide a horizontal Field Of Vision (FOV) of 360 
degrees. The longitudinal FOV (in driving direction) is of 
150 degrees and the transversal FOV is of 100 degrees. The 

area of interest is an ellipsoid cone with the radius of 11 
meters and 4 meters. 

Multi-channel rectification [11] is used to obtain three 
rectified image pairs from the fisheye image pair. A GPU 
based implementation of the stereo reconstruction proposed 
in [16] is used to obtain a 3D point cloud of the surrounding 
environment. The 3D points are used to construct a DEM 
[11], [15] a 2D grid of heights. The classified DEM is 
obtained by labeling each cell as “ground” or “obstacle” and 
is used to generate a set of obstacle hypotheses. 

III. OBSTACLE DETECTION 

We use two approaches to generate obstacle hypotheses. 
The first technique consists in the grouping of DEM obstacle 
cells into connected blobs (clusters). The second one is a fast 
sliding window based approach using monocular vision. 
Both methods generate a list of object candidates, each 
hypothesis being described by two models: a 3D cuboid and 
a free-form polygonal model. The 3D boxes are used for 
defining the region of interest for the object classification 
step, while the free-form polygons are used in the tracking 
stage. 

A. Obstacle Detection from Classified DEM 

At this stage, the DEM cells classified as “object” are 
grouped into individual clusters. The grouping process is 
performed in 2D by using the projection of the Elevation 
Map cells on the ground plane. The spatial proximity 
criterion between DEM cells is used to determine the 
connected entities. For each separate group of cells an 
oriented bounding box is determined. 

a) b) 

Fig. 3:  Omnidirectional stereovision using fisheye lenses mounted on an AGV and the stereo frames. a) System setup. b) Stereo pair of 

fisheye images. c) Left grayscale image and the elevation map projected on the left image. d) The 3D view representation including the 

elevation map. The points are classified as Ground (blue) or Object (red). 

c) d) 

Fig. 2: Object recognition process 
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B. Sliding window over fisheye image 

Considering the higher importance of pedestrians due to 
their vulnerability we use another approach for their 
detection. This approach is based on monocular vision and is 
independent from the stereo based elevation map. We use a 
sliding window directly over the fisheye intensity image in 
order to detect pedestrians. We observed that the size of 
pedestrians changes only slightly over the distance from 
camera. However, the orientation of the pedestrian changes 
with its position relative to the camera. Considering that the 
pedestrian orientations are symmetrical with respect to the 
image center, a solution would be to rotate each individual 
detection window before classification, but at a high 
computation cost. A more efficient solution is to train a 
classifier with a larger training dataset, consisting of 
pedestrians at multiple orientations. For the training dataset 
we used scenarios with multiple pedestrians walking around 
the AGV at different distances and orientations. We applied 
additional rotations over the extracted pedestrians to extend 
the dataset.  

In our experiments we used a 80 x 80 pixel size detection 
window. The image is scanned densely with a step rate of 4 
pixels over the fisheye frame. The fisheye frame is resized to 
512 x 512 pixels. Due to the small scale change of 
pedestrians in the fisheye image, we are able to use only a 
single detection window scale. In order to classify a 
detection window as pedestrian or non-pedestrian, we follow 
the Aggregated Channel Features (ACF) based detection 
approach proposed by Dollar et al. in [18], 8 image channels 
are computed for the fisheye intensity frame: one channel for 
grayscale intensity, one for gradient magnitude and 6 for 
oriented gradient magnitudes (using six orientations). 8 
aggregate channels are obtained by computing an average for 
4 x 4 pixel cells. The resulting channels have a size of 128 x 
128 pixels. The classification of the sliding windows is 
achieved using the aggregated channel features with a 
boosting classifier. The boosting classifier uses 2048 two 
level decision trees. 

For each 2D detection from the fisheye frame we 
estimate a 3D cuboid. We map each reconstructed 3D point 
to the fisheye frame and compute a median for the points that 
are mapped in the 10 x 10 pixel region in the center of the 

detection window. The median 3D point is projected on the 
ground plane and a 0.5 x 0.5 x 2.0 meter cuboid is generated 
in 3D over that point, as seen in Fig.4. These obstacles, 
together with the previous obstacles, are merged into a single 
obstacle list. 

C. Obstacle Representation with Attributed Polygonal 

Models 

For each object hypothesis described by a 3D cuboid , we 
also extract an attributed polygonal model (see Fig. 5) which 
provides a better object approximate with a small subset of 
points. The free-form polylines are computed by adapting the 
BorderScanner algorithm previously developed in [9]. The 
main idea is to extract an object model by selecting the most 
visible (not occluded) parts from the camera position. This is 
achieved by using a scanning axis which extends from the 
observation point and moves in a radial direction with fixed 

Fig. 5: Top: detected objects represented as 3D oriented boxes. Bottom:  the 

free-form polygonal representation. 

Fig. 4: 2D Sliding window based 3D cuboid estimation: a) Left image; b) 2D sliding window detection results (green) and the 

reconstructed 3D points projected on the left image (red); c) Estimated 3D cuboids in the left image; d) 3D cuboids in 3D space 

a) b) c) d) 
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steps. At each step, the most visible cell that is classified as 
object is marked as a delimiter cell. The extracted contours 
are used to compute polygonal structures so that each 
individual DEM cluster is described by a separate free-form 
polygonal representation (see Fig. 5, bottom). 

IV. OBSTACLE TRACKING 

The object tracking (see Fig. 6) consists in estimating, 
recursively in time, the object state given all observations up 
to the present time t. The tracking technique can be divided 
into two separate stages: motion estimation and filtering. The 
motion estimation approach takes into consideration the 
previously extracted delimiters. For each associated contour 
pair that identifies the same object in the consecutive frames 
we compute an optimal translation T and rotation R that 
minimize the alignment error. For this we use the Iterative 
Closest Point (ICP) approach, previously presented in [17]. 
According to the ICP technique, each obstacle can be 
described by two set of points: a model set {p1,p2, ..., pM} 
that defines the obstacle contour in the previous frame, and a 
data set {q1,q2, ..., qK} that defines the obstacle contour in the 
current frame. The optimal transformation is estimated by 
minimizing the following objective function: 

 



N

i

ii qTRpTR
1

2
),(  

where N represents the number of point-to-point 
correspondences (pi ,qi). In order to stabilize the results, the 
object positions and the extracted speed vectors are 
subjected to a standard Kalman filtering technique. 

V. OBSTACLE CLASSIFICATION 

Having a list of tracked obstacles, our goal is to classify 
each of them based on visual features. We use three main 
classes: Pedestrian, AGV, Other obstacle. The obstacles are 
represented as 3D cuboids. We have to obtain a 2D image in 
order to compute visual features. This is obtained by 
projecting the 3D cuboid into the fisheye frame and cropping 

it out as a rectangular image. Considering the nature of the 
fisheye image, the image is radially symmetrical with respect 
to the image center, as it can be seen in Fig. 7. The obstacles 
that are exactly in the front of the AGV, are oriented 
upwards. We compute the angle with longitudinal axis as 
illustrated in Fig. 7.a and rotate the obstacle with this angle. 
This way the obstacles will be always oriented upwards (see 
Fig. 7.b). In order to obtain scale invariance, the 2D images 
of the obstacles are resized to have a fixed height of 100 
pixels if the height is greater than the width or to a fixed 
width of 100 pixels otherwise. The aspect ratio is not 
changed during the resizing. We use this image for 
computing visual codebook based features. 

A. Classification feature computation 

Visual codebook or bag of features based classification is 
a popular approach used for general image classification 
[19], [20] or image segmentation (pixel classification) [21]. 
In our previous works [22] and [23] we managed to adapt 
their use for real-time applications. 

 

We employ a HOG type local descriptor that we used 
also in [22] and [23]. The local descriptor can be computed 
in any position of the image and describes a 16 x 16 pixel 
neighborhood with a descriptor vector. The pixel 
neighborhood is partitioned into 4 cells of 4 x 4 pixels. For 

Fig. 6: Object tracking. a) Each object is labeled with a unique ID (different 

color). b) The trajectories of the dynamic obstacles (top view). 

Fig. 7: 2D image generation for a 3D cuboid: a) obstacle angle with respect to the longitudinal axis; b) 3D cuboids; c) resulting 2D 

images after cropping and rotation. 

a) c) b) 
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each of these cells we compute a histogram of oriented 
gradients using 6 orientations (an increment of 30 degrees). 
The 4 histograms are concatenated and result in a 24 
dimensional descriptor vector. 

We select a training set with obstacle images. Around 
1000000 descriptor vectors are sampled randomly. We apply 
K-means clustering over the samples with K=100. The 100 
resulting centroids build up the visual codebook. 

After training a codebook, any local descriptor vector can 
be matched to the closest visual word (centroid) from the 
codebook in Euclidean distance. In order to extract the 
classification features for an obstacle image, we compute the 
local descriptors densely, at each pixel position. Each of the 
computed local descriptors is matched to the closest 
codebook word. We propose 25 image regions obtained 
from 5 different partitionings: 1x1, 1x2, 2x1, 2x2 and 4x4 
(see Fig. 8). We use as classification features the histogram 
of visual words in those regions. 25 regions and codebook of 
100 words result in 2500 features for an obstacle. 

B. Obstacle classification 

We use two binary classifiers for AGVs and pedestrians. 
The obstacles that are not classified as AGV or pedestrian 
are classified as “large other obstacle” if the obstacle is 
higher than 50 cm or “small other obstacle” otherwise. We 
need to train each binary classifier with a training dataset 
consisting of positive and negative samples using the 
previously defined 2500 classification features. We use Ada-
boost [24] with 2048 rounds and two level decision trees as 
weak learners. Using the learned classifier models any 
obstacle can be classified based on the visual codebook 
based features. If an obstacle is classified positively by both 
classifiers, then we choose the class label with the highest 
probability estimate. 

Due to obstacle tracking we have access to a 
classification history. If an object is tracked for more than 5 
frames, we take into consideration the last 5 classifications 
and apply majority voting. This way we are able to filter out 
temporary false classifications. 

C. Detection fusion 

We have proposed two different detection approaches for 
proposing obstacles hypotheses. Pedestrians can be detected 
by both approaches. We consider that two 3D cuboids are 
overlapping if the ratio between the intersection volume and 
the unified volume is more than 50%. In case of overlapping 
detections we retain the obstacle with the highest 
classification probability. 

VI. EXPERIMENTAL RESULTS 

The proposed solution was implemented and integrated 
into a visual perception system in the framework of FP7 EU 
PAN-Robots project [25]. The system runs at 10 
frames/second on a GPU equipped industrial PC that was 
mounted on a forklift AGV. Fig. 9 illustrates some obstacle 
classification results in industrial warehouse environments. 

In order to train and evaluate the obstacle classifiers we 
created an obstacle database consisting of 2287 pedestrians, 
454 AGVs and over 20000 other obstacles. We used 75% for 
training and 25% for evaluation. In Table I we provide the 
classification accuracy and precision for each of the classes. 

The DEM based detection approach is a generic obstacle 
detection technique based on grouping cells classified as 
objects, while the sliding window based approach focuses 
only on pedestrians. For being able to evaluate the 
recognition rates of each individual obstacle detection 
approach, as well as to compare them with the proposed 
combined solution we setup the following scenario.  A 
ground truth sequence was created with a high number of 
pedestrians including different challenging situations. The 
scenario includes dynamic pedestrians, grouped pedestrians, 
different occlusions cases and all seen from different 
distances and angles, from standing or moving AGV. Over 
2000 frames were manually annotated resulting in 7793 
ground truth pedestrians. Table II show the recall and 
precision rate for each approach. It can be noticed that the 
proposed combined solution in this work provides a 
significant increase in detection rate. 

VII. CONCLUSIONS 

In this paper we proposed an omnidirectional 
stereovision system for the localization and recognition of 
obstacles. In order to perceive the surrounding world, the 
presented solution employs fisheye cameras for 360 degree 
depth perception. First, the reconstructed dense stereo data is 
mapped into an intermediate classified elevation map. Then, 
a set of obstacle hypotheses are generated by grouping the 
object cells from the elevation map. Taking into account the 
higher risk of pedestrians, an additional sliding window 
based solution is used to detect in particular pedestrians. The 
generated list of candidates by both approaches is subjected 
to a tracking mechanism. Finally, the resulted set of trackers 
is classified as: pedestrian, AGV, large obstacle. The 
proposed combined approach in this work proves to be 
efficient in terms of detection accuracy and precision. 

TABLE I 

OBSTACLE CLASSIFICATION EVALUATION 

CLASS RECALL PRECISION 

Pedestrian 95 % 94 % 

AGV 85 % 80 % 

Other 92 % 93 % 

 TABLE II 

DETECTION RATE EVALUATION 

APPROACH RECALL PRECISION 

Sliding Window 78 % 96 % 

DEM 85 % 97 % 

DEM + Sliding Window 93 % 94 % 

 

Fig. 8: The 25 image regions used for histograms of visual words. 
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