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Abstract—In this paper we present a stereovision-based ap-
proach for tracking multiple objects in crowded environments
where, typically, the road lane markings are not visible and the
surrounding infrastructure is not known. The proposed technique
relies on measurement data provided by an intermediate occu-
pancy grid derived from processing a stereovision-based elevation
map and on free-form object delimiters extracted from this grid.
Unlike other existing methods that track rigid objects using also
rigid representations, we present a particle filter-based solution
for tracking visual appearance-based free-form obstacle represen-
tations. At each step, the particle state is described by two com-
ponents, i.e., the object’s dynamic parameters and its estimated
geometry. In order to solve the high-dimensionality state—space
problem, a Rao-Blackwellized particle filter is used. By accurately
modeling the object geometry using the polygonal lines instead of
a 3-D box and, at the same time, separating the position and speed
tracking from the geometry tracking at the estimator level, the
proposed solution combines the efficiency of the rigid model with
the benefits of a flexible object model.

Index Terms—Qbject tracking, particle filters, polygonal mod-
els, Rao-Blackwellization, stereovision.

I. INTRODUCTION

HE SURROUNDING environment of a moving vehicle

is filled with relevant objects of many types and shapes,
all demanding the driver’s attention. An advanced driving as-
sistance system, which is designed to temporarily fulfill the
driver’s duties, particularly in cases when the human reaction
time or the human attention span are not up to the task, needs
an accurate representation of the driving environment in order
to take the best decisions.

The most challenging objects of the driving environment are
the dynamic ones, and for this reason, a considerable amount
of research has been dedicated to the modeling and tracking of
these entities [1], [4].

A dynamic entity is modeled by a set of parameters rep-
resenting its geometry, its position, and its speed. A tracking
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mechanism estimates the value of these parameters over time,
relying on features extracted from processing the raw data
delivered by the available sensors. Despite the simplicity of
the general idea, there are significant challenges in each step
of the tracker’s design. The problem of dynamic environment
representation becomes a difficult task when the surrounding
world is crowded, where, typically, the road lane markings are
not visible and the surrounding infrastructure is not known.
This may include the cases of traffic intersections, crowded
urban centers, parking lots, or off-road scenarios. The tracking
process must take into account multiple factors, such as the un-
predictable nature of the obstacles, the measurement uncertain-
ties or the occlusions. In addition, since the driving environment
is composed of multiple static and dynamic objects that can
be observed at the same time, the environment tracking system
must be able to maintain and update the state of multiple objects
at the same time, associating to each tracked object the proper
measurement data.

There are many choices for the sensorial setup that provides
the raw data to be analyzed and used as measurement in the
tracking process. Most tracking techniques rely on the use of
ultrasound [13], [27], laser [2], [7], [10], monocular [29], [30],
or stereovision sensors [5], [6], [8], [9], [12], [14], [15]. As
the imaging technology has become more reliable and cheaper,
vision-based object modeling and tracking has been a very ac-
tive research topic in recent years. In [1], the authors provide a
survey of the past decade’s progress in the vision-based vehicle
detection for monocular and stereovision sensor configuration.
While the monocular applications process the information in
the image plane, the stereovision applications are able to pro-
cess the information in 3-D space. The measurement data can
be used as it is, by directly tracking, for example, 3-D point
clouds [5], with each point being handled independently. Other
stereovision-based tracking solutions try to reduce the computa-
tional cost by using intermediate representations, transforming
the 3-D information into digital elevation maps [14], octrees
[24], occupancy grids [28], [31], or stixel maps [15], [32].

When designing tracking solutions, one of the most
important choices to be made is the choice of the object model,
which is the state to be estimated over time. The model has to
be at the same time representative for the object that is tracked,
but it also has to be computationally efficient. Related work
includes models such as polygonal lines [7], difference fronts
[8], voxels [10], 2-D boxes [2], 3-D cuboids [6], or object
contours [11], [17].
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The most popular model for a dynamic traffic entity is the
3-D oriented box, which can be thought as a bounding box for
the real obstacle in the world. This model is highly efficient,
as it has a low-dimensional state vector, its evolution in time
can be expressed by simple equations, and the measurements
are easily associated to it. This model works well in simplified
driving environments such as the highway, but it is less suitable
for a complex environment, with many types of objects, which
have a less cuboidal structure. Using simplified models such as
the cuboid may lead the tracking process to incorrect results
when the target pose estimation is affected by occlusions or
by changes in its visual appearance. In order to overcome this
problem, various algorithms that account for deformable object
appearance have been proposed [16], [17], [30]. Typically, the
model shape is implicitly represented [17], or by a set of fixed
number of points. In particular, the authors in [17] describe a
tracking method for slowly deforming and moving contours
that are implicitly represented. Isard and Blake propose the
CONDENSATION algorithm [18] for tracking parametric
spline curves.

Once the target model is established, a tracking algorithm is
usually developed starting from a popular probabilistic estima-
tor. The problem of tracking is necessarily probabilistic as both
the model of the object’s state and the processed sensorial data
are imperfect bits of knowledge about the world. The estimator
should take into account the strong and the weak points of each
information source and combine them for the best result.

The most popular estimators used for tracking are Kalman
filters [6], particle filters [14], [16], [18], or hybrid methods
[20], [21]. The traditional Kalman filter represents an opti-
mal estimator, in which the posterior distribution is modeled
by a Gaussian function. However, the classical Kalman filter
solutions are only applicable to linear systems with unimodal
distributions. The extended Kalman filter [25] allows nonlinear
transformations for the state evolution and for the measurement
mapping function, but still assumes that these transformations
can be linearly approximated, at least in a reduced vicinity, and
that the state is unimodal.

As an alternative, the particle filter approaches approximate
the state space by a collection of NV discrete samples, called
“particles.” Each particle represents a hypothesis about the sys-
tem state. One of the main advantages of the particle filter-based
solutions is the ability to handle nonlinear systems and multi-
modal distributions. However, particle filters are not suitable for
high-dimensional state spaces as their computational complex-
ity tends to exponentially grow with the number of state param-
eters. In order to handle this problem, different strategies can
be found in the literature. For example, in [19], the unscented
Kalman filter is used to propagate the state distribution, so that
the number of sampled particles is reduced. In [20], the Rao—
Blackwellized particle filter (RBPF) is introduced. The key
idea of the RBPF approach is that a part of the state space
can be analytically updated, whereas another part of the state
is sampled. In [21], the RBPF is applied for simultaneous
localization and mapping. The robot pose is estimated with a
particle filter. In addition, the state vector is represented by
N landmarks. Each landmark position is updated by using a
2 x 2 extended Kalman filter (EKF). In [2], a RBPF technique
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is applied for model-based vehicle tracking. For simplicity, the
vehicle shape is approximated by a rectangle.

Our research team at TU Cluj-Napoca has been involved in
the field of stereovision-based driving environment perception
since 2001. Using sparse edge-based stereovision, the obsta-
cles’ position, size, and speed were tracked using a nonoriented
cuboid model [6], as the limited 3-D information was not
suitable in a more detailed perception. When real-time dense
stereovision solutions became available, they were used for a
much more detailed perception of the environment. The particu-
lar characteristics of the driving environment allowed us to sim-
plify the dense 3-D information in the shape of elevation maps,
whose cells could be labeled, based on the coordinates, density,
and other characteristics of the associated points, into drivable
(road cells), obstacle cells, intermediate (sidewalk) cells, and
cells with no measurement data [12]. Significant improvements
to the elevation map as a model for dynamic environments,
which include modeling and tracking the speed of each map
cell and additional gray-scale information that enhance the per-
ception of the 3-D environment, are presented in [39] and [40].

The cells labeled as obstacles in the elevation map signal
obstacle areas in a 2-D bird-eye view of the road environment
and can be regarded as an unfiltered raw occupancy grid.
From this point, two directions of research have been followed.
One direction consists in grid tracking at cell level, trying to
refine, for each cell, the probability that it is an obstacle cell
(occupancy probability), and computing a speed vector for it,
either using the raw occupancy grid directly [28], or speeding
up the computation by using difference fronts between raw
grids [8].

The other direction is model-based object tracking using the
obstacle cells of the grid as measurement data. A particle-based
solution for tracking objects modeled as nonoriented cuboids
using the obstacle cells of the elevation map is presented in
[14]. This model was, however, quite limited compared with the
quality of the measurement information, and therefore, methods
for taking advantage of the shape information were devised.
This paper [9] presents a method for extracting individual
objects from the occupied elevation map cells, in the shape
of polygonal lines. The approach presented in [3] tracks these
delimiters using the iterative closest point (ICP) for association
between past and present contours. The solution proposed in
[42] tries to improve the representation consistency by taking
into account the persistence of occupied grid cells. Both track-
ing methods use Kalman filter for state update, but does not
allow the shape of the object to change—the geometry of the
object is assumed fixed.

The method described in [33] is able to track the object’s
geometry along with its position and speed, by using a set of
Kalman Filters for the control points (landmarks) of the object’s
contour, which define the object’s shape, and one Kalman filter
for tracking the motion of the whole object.

There are two problems with the Kalman filter: 1) the uni-
modal nature of the approximation of the probability density of
the target’s state; and 2) the need of data association. In face
of these problems, a particle filter presents itself as the natural
alternative. However, modeling the whole state of the object
(position, speed, and geometry) by means of particle filters
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would require a large number of particles, and therefore a mixed
solution, combining the efficient Kalman filter for tracking the
object’s geometry, and the versatile particle filter for tracking
the position and speed, is the solution described in this paper,
an extended version of [41].

The method presented in this paper is designed to estimate
the position, the speed, and the geometry of objects from
noisy stereo depth data. The modeling and tracking solution
rely on measurement information provided by an intermediate
occupancy grid and on free-form object delimiters extracted
from this grid. The intermediate representation is derived from
processing a stereovision-based elevation map, whereas the
attributed polygonal object representations, are obtained by
radial scanning this map by using the BorderScanner algorithm.
Unlike other existing methods that track rigid objects using also
rigid representations, we present a particle filter-based solution
for tracking visual appearance-based free-form obstacle rep-
resentations. In order to increase the object model flexibility,
each particle is described by two components, i.e., the object’s
dynamic parameters and its estimated geometry represented by
a vector of control points. Another essential contribution of the
proposed approach is that the high-dimensionality state—space
problem is solved by adopting a RBPF is used.

The proposed method takes into consideration the stereo un-
certainties. By accurately modeling the object geometry using
the free-form polygonal lines instead of a 3-D box, and, at
the same time, separating the geometry tracking from position
and speed tracking at the estimator level, the proposed solution
combines the efficiency of a rigid model (small state space, sim-
ple state equations, simple prediction, compact representation)
with the benefits of a flexible object model (a model that is able
to adapt its shape according to the most recent measurement).

This paper is structured as follows: the next chapter presents
the overall system architecture, the object model is described
in Section III, the proposed multiple object tracking approach,
and its main steps are detailed in Section IV, whereas the last
two sections show the experimental results and the conclusion
about this paper.

II. SYSTEM OVERVIEW

The overall system architecture is based on two main mod-
ules, i.e., preprocessing and tracking (see Fig. 1).

The preprocessing module involves some operations that
are performed before the obstacle tracking such as image
acquisition or stereo reconstruction tasks. The stereo recon-
struction is performed either offline or onboard. For the of-
fline stereo reconstruction, we use an semiglobal matching
(SGM) [43] technique that is implemented on GPU [35],
[38]. As the onboard system is constrained by power require-
ments, the online stereo reconstruction is performed with a
dedicated TYZX board [26]. The reconstructed stereo data
is used to generate a more compact 2.5-D grid-based repre-
sentation [12], in which each cell is classified based on its
height value as obstacle, traffic isle, or road [see Fig. 2(b)
and (d)]. The ground plane projection of this intermediate
representation is used to extract free-form object delimiters
[see Fig. 2(c) and (d)] and to compute a probabilistic measure-
ment model.
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Fig. 1. Multiple object tracking. System architecture.

(c) (d)

Fig. 2. (a) Gray-scale left image. (b) Digital elevation map with classified
cells as (blue) road, (red) object, and (yellow) traffic isle. (c) Object delimiters.
(d) The elevation map is projected on the ground plane. (Top view) The
extracted delimiters are illustrated with green.

The tracking module performs optimal state estimation for
each individual object. First, the data association is applied in
order to assign new measurements to the existing tracks and to
initialize new ones. Then, for each existing target, the following
processing tasks are performed, i.e., state prediction, Kalman
filtering of object geometry, particle weighting, estimation,
resampling, and injection. These steps will be detailed in the
next sections.
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Fig. 3. (Left) Classified occupancy grid and the extracted object delimiters

(top view). (Right) Object model. An object from the traffic scene is represented
by N control points P} (polygonal vertices), and a reference point Ppef.

III. OBJECT MODEL

Even the most tracked obstacles in a driving environment
are considered to be rigid (cars, poles, walls, side fences, etc.),
their estimated visual appearance is changing over time. This is
caused by several factors. For example, the same obstacle can
be seen from different observation points (when the ego vehicle
is moving), the obstacles gradually appear or disappear from
the visibility area of the ego vehicle or because the objects are
partially occluded by other crossing obstacles. Therefore, the
shape of a tracked object may be adapted according to the most
recent measurements. In order to provide better flexibility, each
object is represented by a free-form model (see Fig. 3) with the
following attributes.

1) The object position described by a reference point
Prot(xyef, zref) in the coordinate system of the camera.
Initially, the reference point is set to be in the center
of mass of the occupancy grid blob that describes the
object. Its position is recursively updated by the tracking
algorithm. The reference point remains fixed in the world
coordinate system when dealing with static obstacles and
is updated with the estimated translations when dealing
with dynamic obstacles. It must be noted that the coor-
dinate system has its origin in front of the ego vehicle,
with X -axis oriented toward the right and Z-axis pointing
toward the moving direction of the host vehicle.

2) The obstacle velocity V(vm, V).

3) A list of control points describing the obstacle shape
{Pi(x%,21)]i = [1...N.]}. In the initialization step, the
control points are determined by choosing N points that
are uniformly distributed along the object contour. The
number of control points is fixed and is the same for
all obstacles. Each control point P!(z¢,2%) is defined

cr~c
by its relative position L¥(I%, %) to the object reference
point P,.¢. At each frame, the control points are updated
by the tracking mechanism with the new measurements
extracted by using the BorderScanner algorithm. More

details are given in Section IV-E.

Having the parameters previously described, the overall ob-
ject state at time ¢ can be represented as

. 172 N T
St: [lrefazrefavfcavzaL vL 7~~~7L }

—_—

(D
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being described by two main components: the object dynamic
part X; = [Tyef, Zref, Vs, v2]7 and its geometry component

G, =L}, 12,... LN

Sy = [Xi, Gy)". 2)

IV. OBSTACLE TRACKING

A Bayesian solution to the tracking problem consists in
estimating, recursively in time, the current object state S;, given
all observations Zy,; = {Z1,Z>...,Z;} collected up to the
current time ¢

(80| Z1e) = np(Z4]S1) / (S48 )p(Si1|Z1er) G)
Se—1

where p(Z;|S:) describes the observation model, the
p(S¢|Si—1) term denotes the state transition probability
from S;_; to Sy, and 7 represents the normalization constant.

A. RBPF

In a particle-based filtering solution [16], [18] the object state
probability is approximated by a set of N weighted particles
p(S; ~ {Si,wi,i=[1...N]}. Each particle S} represents a
hypothesis of the state of the object at a given time ¢. There-
fore, object tracking consists in estimating the best state by
evaluating the samples S} and their attached weights w?, given
a motion model and a measurement model. A disadvantage
of the classical particle filtering algorithm is that it is not
suitable for high-dimensional state spaces. Usually, its com-
putational complexity grows exponentially with the number of
state parameters. The “Rao—Blackwellization” process consists
in estimating a part of the object state analytically, thus reducing
the number of dimensions and the computational cost of the
particle filter mechanism. By dividing the full object state S;
into a dynamic component X; and a geometry part G, the
entire posterior density p(S;|Z1.;) is defined as

(S| Z1:t) = p(Xe, G¢| Z14) 4)

and can be factored as

P(St| Z1:4) = p(Gi| Xy, Z1:4)p(Xt| Z1:4). (5)

The first probability density p(X¢|Zi.¢) denotes the ob-
ject position and velocity and is approximated by a set of
weighted samples {X},w}, Gi,i =[1,...,N]}. The second
density p(Gy|X¢, Z1.1) represents the obstacle geometry pos-
terior distribution conditioned on its position, speed, and all
observations up to the time ¢. Each control point in Gy is
represented by a mean L7 and a covariance matrix >°7 and is
estimated analytically by applying a 2 x 2 Kalman filter. The
particle set can be now defined as

[Xf,wz, (E%i:) (ﬁ%i)f (6)

gilagi =
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where i = [1,...,N]and j = [1,..., N.]. For each individual
target, the proposed tracking solution can be decomposed into
several steps. In the first phase, the tracked obstacle’s dynamic
parameters (position and speed) are estimated based on the
new observations through the particle filtering. In the second
phase, using Kalman filters, the key point positions of each
particle are recursively updated by taking into account the
new estimated dynamic state. In the last phase, each key point
position is estimated by using a weighted average. The weights
are provided by the associated particles. Next, we will present
the main steps involved in our object tracking solution.

B. Data Association

In the data association step, the task is to assign new measure-
ments to the existing individual trackers and to create new ones.

Before applying the data association, we also must take
into account the ego-car motion in order to separate its speed
from the independent motion of the tracked participants. In
our case, the velocity v and the yaw rate w information are
provided by the host vehicle sensors. Therefore, the position
state parameters (Zyef, 2ref) Of each particle are transformed
by applying the ego-car motion model with constant speed and

constant yaw rate
|:.§Cref_cj| _ [coszb sinw} |:I'ref:| B {t;go} 7
Zref_c sinYy  cosy Zrof 159
where At is the time delay between two frames and ¢ = N
represents the vehicle rotation angle around the Y-axis and 7" =
[teoo te9°]” is the ego-car translation.

Next, the data association is performed by computing over-
lapping scores w;; between grid blobs at consecutive frames.
We define a blob as a collection of connected grid cells that are
occupied. For each blob entity A from the previous frame and
for each blob B from the current frame the following distance
metric is calculated:

Na Ngp

wap =[ANB|=> > 0(a;b;) (8)

i=1 j=1

where O(a;, b;) denotes the overlap function between two cells
from A and B, N4 represents the number of cells in the blob
A, and Np is the number of cells in the blob B. The value
of O(aj,b;) is 1 when the two points a; and b; overlap and 0
otherwise.

As the result, a score matrix W = {w;; } is generated. Given
matrix W, two types of association are determined: forward
association (the most likely association from A to B)

Assoc(A) = argmax p(B|A) = arg max was )
B B Na
and backward association (the most likely association from
Bto A)

Assoc(B) = argmax p(A|B) = arg max was
A A

Ng (10)

This double association allows us to consider the cases when
a larger object’s blobs are split into multiple disjoint sets or
vice versa.

Having the two sets of blobs described as Sa = {4;]i €
[1...M]} and Sp = {B,|j € [l...N]}, the final list S of
distinct association hypotheses is defined as

S={(A;,Bj)|Assoc(A;) = Bj,ie[l...M],j€[l...N]}
U {(Bj,Ai)‘ASSOC(Bj) = AZ‘,ASSOC(Ai) 75 Bj,

iell...M],jel...N]}. (11)

As the aim of association is to generate a set of distinct
hypotheses pairs, associations from B to A must not repeat
the associations from A to B, but rather gather the association
pairs that have not been generated when searching from set A to
set B. For this, we introduced an extra constraint in the second
part of (11), Assoc(A;) # B;.

C. Initialization

The initialization step is applied when new association hy-
potheses (not tracked objects) are detected. This is achieved
by comparing the list of associated blobs with the existing list
of individual trackers. The object state is initialized as in the
following.

1) Initializing the Object Speed: The motion parameters
describing the initial state are estimated by applying a fast pair-
wise alignment of the associated delimiter pairs (from the pre-
vious and current frames). For this, we use the ICP algorithm,
previously described in [3]. For each association hypothesis,
we define two set of points: a model set P = {p1,p2,...,pnm}
that describes the object delimiters in the previous frame,
and a data set Q = {q1,¢2, ..., i} that describes the object
delimiter in the current frame. For each point g; from () the
corresponding closest point p; from P is determined. Having a
set of corresponding points (p;, ¢;), an optimal rotation R and
translation T is computed by minimizing the alignment error

N
ER,T) = Z IRp; + T — g;?

i=1

(12)

where NV is the number of point-to-point correspondences. The
number of corresponding points varies depending on the length
of the two contours P and () (model and data contour).

2) Initializing the Object Position: A set of initial random
object hypotheses are generated around the measurement
position

{ablab = [X5,wb, G i = (1. NI} (3)

3) Initializing the Object Geometry: Each particle is initial-
ized with the object geometry G that is extracted from the
measurement delimiters. It must be noted that a small amount
of new particles (including new hypotheses for object position
and geometry) are added in the Injection step.

D. Prediction

The prediction task consists in generating the new population
of particles at time ¢ from the previous set S;_; given a state
transition model p(S;|S;_1). First, the particles are moved by
applying a deterministic drift based on the target dynamics.
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Fig. 4. (a) Left camera image. (b) Occupancy grid projected on the ground
plane. The obstacle delimiters are colored with green. (c) Distance transform
of the extracted delimiters. (d) The density map is generated by taking into
account stereo uncertainties and distances to the closest delimiter points. High
intensities indicate high measurement probability.

Then, each predicted sample state is altered according to a
random noise.

Each particle’s position and speed X; = [Zref, Zrof, Vs V2] T
is predicted by using the standard constant velocity model

Lref 1 0 At 0 Lref_c
Zet | |0 1 0 At Zref_c
w | Tloo 1 o] w [T U9
v, 00 0 1 v,

The matrix multiplication describes the deterministic drift
component. The stochastic part is defined by the random noise
w ~ N(0,Q), which is drawn from a zero mean Gaussian
distribution having the covariance matrix Q. As in our case,
we use a constant velocity model, the covariance matrix ¢
is selected considering an experimentally adjusted covariance
accounting for the obstacles’ possible acceleration.

E. Measurement Update

The purpose of this stage is to assign new weights to the
predicted particles and to update the object geometry for each
particle. First, the raw object delimiters are extracted from
the current occupancy grid. Then, the new particle weights
are computed by evaluating the alignment error between the
measurement and the predicted hypotheses. Finally, the key
point positions of each individual particle are updated taking
into account the new estimated dynamic state.

1) Object Delimiter Extraction: The obstacle delimiters are
extracted from the occupancy grid, at each frame, by using
the BorderScanner algorithm previously described in [9] (see
Fig. 4). The main idea of the BorderScanner technique is to

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

extract a contour Cheas for each object by accumulating the
most visible grid cells ¢; that are occupied

Chneas = {¢i|Occ(c;) = true,i € [1, ..., M.]}. (15)
This is achieved by using a virtual ray that extends from the
ego-car position and traverses the grid map in a radial direction
with fixed steps. The closest cells that are occupied are collected
into the contour list Cpeas. In (15), M. is the number of
extracted contour points, and Occ(¢;) is the occupancy state of
the measurement grid cell ¢;.

2) Computing Stereo Uncertainties: The next step is to
compute the stereo uncertainties. As suggested by [37], we
can approximate the lateral o, error and the longitudinal error
0, as

220y 02T
Oy =

b-f’ z

(16)

O, =

where x and z are the 3-D coordinates of a point, o4 denotes the
disparity error in pixels, f is the focal distance, and b defines the
distance between the left and right cameras (baseline).

3) Computing the Distance to the Measurement: The aim
of this step is to determine a distance metric between any occu-
pancy grid cell and a corresponding measurement point. First,
for each obstacle, we select a region of interest (ROI) covering
all generated particles around the measurement contour C'eas.
Then, for each cell Mgy, (Tam, Zam) in the ROL, we compute
two parameters: a distance d,,, to the closest measurement cell
¢j(Zqel, Zder), and its position, where dm represents the index
of a given cell in the local map, and del is the index of the
closest delimiter point. The resulted values are stored in a
distance map.

The probability density map [see Fig. 4(d)] can be deter-
mined now by converting the distance values d,,, of each point

Mdm according to
Zdm — Zdel)>
+( d 2dl) D (17
O—Z

e =
2w0,0, 2 o2

where o, and o, represent the stereo uncertainties of the
corresponding measurement point. As each cell has its own un-
certainty, the o, and o, errors are determined for each measure-
ment cell according to (16) considering that the disparity error
is about 0.25 pixels in the case of a good stereo-reconstruction
system. Both parameters define the confidence of the system
in the measurement model. The confidence of the results is
inversely correlated with the value of these parameters. All
computed weights are stored in a density map.

4) Weighting: This step consists in assigning new weights
w! to the delimiter hypotheses ¢! based on their likelihood

7Ta:z

p(Z) X = X,,Gy = Gy) . (18)

First, we need to define a distance metric between a given
particle and a given observation. This is achieved by estimating
an alignment error between object hypotheses and the mea-
surement data. For each control point L’ from the particle ¢;,



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

VATAVU et al.: OBJECT TRACKING IN SCENARIOS USING OBSTACLE DELIMITERS AND PARTICLE FILTERS

Dist: to the

d(LJ ’ (Wmeas ) V4

ement: .
77 - Density value

Object Delimit
JRESESIEROLS Distance Transform

Probability Density
Map Map
Fig. 5. Euclidean distance and the weight metrics are determined by super-
imposing the particle model on the two maps: distance transform map and
probability density map.

Fig. 6. (Left) Color encoding of object speed. Color hue describes the ori-
entation of a moving obstacle, whereas the saturation describes its magnitude.
(Right) Example with labeled obstacles according to their speeds.

we determine the closest corresponding point c¢; from the
measurement Clpeas
d(LJa Cmeas) = d(Lja Ck)

min

19
ke{l,....M.} (19

where M, is the number of measurement points in Chyeas.
In order to consider the stereo uncertainties, we also assign
a density value 77 to each corresponding pair (L7, cy). The
Euclidean distance d(L’,Cpeas) and the weight Wi metrics
are determined by superimposing the particle model on the two
maps estimated in the previous step (see Fig. 5). The alignment
error is computed according to

Ne j :
~d(LY ) Cmeas
Dalignment = Z L EVC ) (20)
= Y
k=1
Finally, the overall particle weight w! is computed as
D2
i 1 7% allf;mcnt (21)
wy = e b .
¢ 2mop

5) Kalman Filtering: Having a population of weighted par-
ticles describing the belief about the object position and speed,
we also need to update the belief about the object shape as soon
as new observations are available. Given an individual particle
qi, its geometry component G is described by a list of control
points. Therefore, for each control point, we apply a 2 x 2

. . oy . .
Kalman filter to estimate its state L7 = [I7,,17]" and covariance

A\
DR

N

Fig. 7. Tracking multiple objects in various traffic scenarios.

Zj . The Kalman filter input measurements are determined by
choosing N equidistant points along the measurement contour
extracted in the step 1. The measurement covariance matrix R
of each control point is computed, by considering the stereo
uncertainties o, and o, defined in the step 2.
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Fig. 8.

Multiple object tracking. (a) Image of a traffic scene. (b) and (c) Result of the static and dynamic object representation, 10 and 25 frames later.

(d) Measurement occupancy grid projected on the ground plane. (e) Particle population after initialization. (f)—(h) Individual object tracker particles, evolving
in time. (i) Initialization step applied to a newly detected tracker corresponding to the tree in figure (c).

Fig. 9. Single frame object shape measurements (blue delimiters) versus tracked geometry (red).

F. Estimation

The current mean state at time ¢ is estimated by using a
weighted average of the particle states

N
S=> wsj. (22)
i=1

G. Resampling and Injection

The resampling step consists in drawing from the previous
particle set with a sampling probability proportional to the as-

signed weights. Thus, the particles with low importance are re-
moved, whereas the samples with large weights are replicated.
However, there are cases when sharp changes in the traffic
scene may lead to the estimation of erroneous states. This may
happen due to the fact that there are no sufficient hypotheses
in the vicinity of the true. This is also known as the particle
deprivation problem. As a solution, we introduced an injection
step, where a small amount of particles with low importance are
replaced with new completely random samples that are drawn
around the measurement, a common approach for preventing
particle deprivation, as described in [36]. Through the injection
step, we also introduce new hypotheses for object geometry.
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V. EXPERIMENTAL RESULTS

The proposed multiple object tracking solution has been
tested on various sequences of urban traffic situations, acquired
in Cluj-Napoca, Romania. We have conducted two types of
evaluations: qualitative assessment and quantitative assessment.
For both types of tests, we used an Intel Core 2 Duo Com-
puter at 2.66 GHz and 4 GB of RAM. The size of the occu-
pancy grid used in our method is 240 rows x 500 columns
(0.1 m x 0.1 m cells). In order to evaluate the accuracy of the
tracking method, we have performed two types of experiments.
In the first case, the ground-truth measurements are provided by
high-performance Global Navigation Satellite System (GNSS)
receivers mounted on the ego vehicle and on the target vehicle.
The second set of experiments is performed on the KITTI raw
data set [34].

A. Qualitative Evaluation

The qualitative assessment was performed on various real-
traffic scenarios. In order to prove the ability of the system to
correctly identify the speed of the objects, each individual ob-
stacle is labeled according to the estimated speed by following
the Middlebury color coding style [22]. As presented in Fig. 6,
the color hue describes the orientation of a moving obstacle,
whereas the saturation describes its magnitude (e.g., blue—for
outgoing objects, yellow—for incoming objects). Each static or
dynamic object is represented by a free-form delimiter and a
speed vector (orange). The free-form delimiter’s projection in
the road plane is a polygonal line, and the height of the obstacle
is the maximum height of the object’s associated elevation map
cells (see Fig. 7).

Fig. 8 illustrates the results of the proposed multiple object
tracking approach, including intermediate frames with the par-
ticle distributions and the labeled obstacles. Fig. 8(e) presents
the case when all new objects’ trackers are initialized for the
first time. Usually, this occurs at the beginning of a sequence
when the list of individual trackers is empty. It can be seen
that the initial random hypotheses are clustered around each
individual object [see Fig. 8(f)]. Moreover, the resulted par-
ticle distributions converge over time [see Fig. 8(g) and (h)].
The estimated mean state is colored with light blue. The
predicted samples are colored with magenta. The picture also
shows the influence of weighting and resampling steps (dark
blue) on the predicted population of particles. Fig. 8(i) presents
a particular case when the initialization step is applied to a
newly activated tracker. A set of initial random object hypothe-
ses (red) are drawn around the measurement position.

Fig. 7 presents some results from real traffic scenes, empha-
sizing the following specific cases:

1) dynamic objects of different size: two buses and a car [see
Fig. 7(a)];

2) two objects moving in a roundabout [see Fig. 7(b)];

3) partially visible objects: moving in an intersection [see
Fig. 7(c)], outgoing [see Fig. 7(e)], or incoming [see
Fig. 7(D);

4) obstacles of different types: static walls and a moving
object [see Fig. 7(d)].

l"‘. J - I#.
)

(b) (

Fig. 10. Evolution of the object shape estimation in time. (a) Incoming
vehicle. (b) Car trajectory (top view) described by a sequence of single frame
measurements (blue color). (c) Tracked model (red). The object position and its
geometry are gradually updated over time.

Fig. 11. Evolution of the object shape estimation in time. (a) Outgoing
vehicle. (b) Car trajectory (top view) described by a sequence of single frame
measurements (blue color). (c) Tracked model (red). The object position and its
geometry are gradually updated over time.

Target Car

Fig. 12. Three-dimensional box is generated using ground-truth data from the
high-accuracy GNSS receivers that were mounted on the Ego Car and on the
Target Car. The target box is fitted over the detected obstacle (right).
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Fig. 13.  (Top) Urban traffic scenario including the target car (blue, indicating

an outgoing motion). The 3-D box (green) is generated by using ground-truth
information and is fitted over the target vehicle. (Bottom) The estimated target

speed is shown with red. The ground-truth speed is illustrated with green.
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Fig. 14. Estimated target orientation is shown with red. The ground truth is
illustrated with green.

It can be observed that the particle population for each object
(dark blue contours) is spread out according to the uncertainties
of the stereo measurement process, but the estimation generated
from the particles (depicted with light blue) follows closely the
real contour of the object.

Fig. 9 shows comparative results between the frame by frame
measurement delimiters, obtained by applying the Border Scan-
ner algorithm (blue) and the resulted estimated object geometry
after tracking (colored with red).

Figs. 10 and 11 show how the object position and geometry
are updated over time (red) by taking into account the sequence
of noisy measurements (blue). It can be observed that the shape
of the tracked model is gradually changing as the target vehicle
is moving along its trajectory.

B. Numerical Evaluation by Using High-Accuracy
GNSS Receivers

In order to be able to quantify the performance of the
proposed method, we have used the ground-truth information
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Fig. 15. Estimated distance to the target vehicle. The ground-truth distance is
illustrated with green.
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Fig. 16. Speed estimation in a controlled scenario.
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Fig. 17. Car orientation estimation in a controlled scenario.

provided by two high-accuracy Novatel GNSS receivers with
RTK support [23]. We mounted one GNSS unit on the ego
vehicle and one unit on the target car. The installed receivers
were able to provide ground truth for the 3-D positioning and
speed of the two cars with centimeter-level accuracy.

In Fig. 12, the target vehicle is represented by an oriented
cuboid of fixed size. The box position and orientation are de-
termined by using ground-truth measurements and converting
them into the camera coordinate system.

For numerical evaluation, we included two types of scenar-
ios: a real urban traffic scenario and a controlled situation. The
first test case implies a sequence of an urban traffic scene, where
the ego car follows a target car.

Figs. 13—-15 show the results for a sample of 270 frames
of city driving (at 10 frames per second), following the target
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Fig. 18. Estimating the distance to the target. The target position is repre-

sented by its reference point.

TABLE 1
SPEED ESTIMATION ACCURACY

Accuracy PF (NO
Metrics GEOMETRY) KF-ICP RBPF RBPF-ICP
MAE (km/h) 3.42 225 1.43 1.33
STDEV (km/h) 5.07 1.06 1.06 0.90
TABLE 1I
ORIENTATION ESTIMATION ACCURACY
Accuracy PF (NO
Metrics GEOMETRY) KF-ICP RBPF RBPF-ICP
MAE (deg) 5.33 4.07 3.16 1.72
STDEV (deg) 5.07 3.65 3.04 3.02
TABLE III
DISTANCE ESTIMATION ACCURACY
Accuracy PF (NO
Metrics GEOMETRY) KF-ICP RBPF RBPF-ICP
MAE (km/h) 3.48 3.54 3.05 2.23
STDEV (km/h) 0.78 0.43 0.49 0.30

vehicle through several maneuvers, at a distance varying from
10 to 25 m. The target’s speed ranged from 10 to 40 km/h, and
the target’s relative orientation to the coordinate system of the
ego-vehicle changes as a left turn is executed.

The estimated speed is compared with the ground-truth
speed, obtained from the high-accuracy GNSS device, as shown
in Fig. 13. The mean absolute error of the speed estimation was
found to be 1.85 km/h.

Fig. 14 shows the comparison between the estimated rela-
tive orientation of the target vehicle with respect to the ego
vehicle’s axis of elongation. The tracker correctly perceives the
changes in orientation of the target, with a mean absolute error
of 2.88°.

The comparison of the estimated distance between the tar-
get and the ego vehicle with the ground-truth distance (the
Euclidean distance between the accurate GNSS points retrieved
for the ego vehicle and the target), is shown in Fig. 15. The
mean absolute error of distance estimation is 1.3 m, which
includes the uncertainty related to the position of the estimated
reference point for the target, as the true shape and size of the
target is not known a priori by the tracker, and is continuously
updated.

Fig. 19. Tracking results on KITTI data set. (a) The static and dynamic
objects represented as free-form attributed polygonal models. The object speed
vector is illustrated with yellow. The colors of the detected objects encode their
speed, using the Middlebury convention (b) The 3-D Virtual view including
the classified Elevation Map, the static (green) and dynamic (red) objects.
(c) The results are projected on the ground plane.

The second experiment was conducted in a controlled sce-
nario, where the target vehicle is moving in front of the ego-car
and is in the field of view for only a short period of time. The
target vehicle passes in front of the ego vehicle, from left to
right, having an accelerated motion that varies its speed during
the observation time from 20 to 30 km/h. We have evaluated the
accuracy of speed, orientation, and distance estimation. Four
tracking solutions are compared: a particle filter-based tracking
solution that does not take into account the variable geometry
of the perceived object (PF-no geometry); a Kalman Filter-
based tracking technique, which uses ICP for motion extraction
and providing the information of free-form delimiter position,
speed, and its geometry (KF-ICP) [33]; the RBPF, including the
variable geometry (RBPF); and the refined version of RBPF, the
RBFP using ICP for speed initialization (RBPF-ICP).

The results of speed estimation are shown in Fig. 16. It is
apparent that although all tracking solutions eventually con-
verge to the correct speed estimation, the use of a variable
geometry model helps the tracker converge faster, and the speed
convergence is sped up even more by ICP initialization.

Fig. 17 shows the estimation of the target object’s orientation,
using the four tracking solutions. All the solutions rapidly
converge to the correct orientation, the best performance being
achieved again by the RBPF-ICP method.

Fig. 18 shows the evaluation of the distance measurement
results relative to the ego vehicle. While the lag in estimation
convergence is much lower than for speed and orientation, as
the distance can be assessed directly from the stereo data, there
are some initial systematic errors. The cause for these errors is
that the target’s reference point is initially estimated nearer to
the ego vehicle than its true position, as the whole target is not
yet fully observable. As the target vehicle gets closer and its true
shape is estimated, the distance estimation gets significantly
closer to the ground-truth data. As overall performance, the
RBPF combined with ICP method again proves to be the best
choice.

Tables I-IIT show the error assessment for the speed,
orientation, and distance estimation using the four tracking
methods.
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COMPARISON OF TRACKING APPROACHES TESTED ON KITTI DATA SET
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TABLE V
COMPARISON OF SPEED ESTIMATION ACCURACY ON KITTI DATA SET

OBJECT
USED FILTERING STATE SHAPE
MODELS TECHNIQUE  PARAMETERS FLEXIBILITY
CUBOIDS 3D Oriented Kalman Position and No
[6] boxes Filter Speed
PF-GRID Dynamic Particle Position and Yes
[28] Grid Cells Filter Speed '
KE-ICP Attributed Kalman Position,
(33] Polygonal Filter Speed and Yes
: Models Geometry
Attributed Fli)l?;trlzlr‘l: d Position,
RBPE-ICP Polygonal Speed and Yes
Kalman
Models . Geometry
Filters

C. Numerical Evaluation Using a Public Data Set

Another set of experiments were performed using a pub-
licly available and well-known benchmark database for driving
assistance sensing and tracking applications, the KITTI data
set compiled and maintained by the Karlsruhe Institute
of Technology, and described in [34]. For our tests, we
used the raw data sequences “2011_09_26_drive_0017" and
“2011_09_26_drive_0018”, from the “city” category. The se-
quences include rectified color and gray-scale image pairs
suitable for stereo reconstruction, 3-D point clouds generated
by a Velodyne laser scanner, Ego-Car 3-D GPS/IMU data, and
object annotations, including position and occlusion status.

The rectified image pairs were processed using an SGM
stereo reconstruction algorithm described in [35] and [38], and
then the higher level detection and tracking algorithms were
applied (see Fig. 19).

The following tracking algorithms were tested on this data
set: cuboid-based tracking using Kalman Filter (CUBOIDS,
[6]), particle-based occupancy grid tracking followed by cell
grouping into individual objects (PF-GRID, [28]), Kalman
Filter geometry tracking combined with ICP-based position
tracking (KF-ICP, [33]), and the currently proposed RBPF-
based tracking solution. A summary of the characteristics of
each method is presented in Table IV.

The tests were aimed at assessing the accuracy of speed
and orientation estimation for two types of objects, i.e., fully
visible objects and partially visible (or partially occluded)
objects. The results of speed accuracy estimation are shown
in Table V, and the results of orientation accuracy estimation
are shown in Table VI. From these results, one can see that the
proposed method, RBPF-ICP, brings considerable improvement
in accuracy, compared with the other methods, particularly in
the case of partially visible objects.

D. Algorithm Complexity and Time Performance

The complexity of the algorithm is linear with the number
of tracked objects, the number of used particles per object, and
the number of control points per model. At particle level, the
processing time is mostly dedicated to computing the particle’s
weight, which means testing the control points against the
measurement data. Therefore, the particle time is linear with the
number of control points. At object level, the processing time

FULLY VISIBLE PARTIALLY VISIBLE
OBJECTS OBIJECTS

Method MAE STDEV MAE STDEV
(km/h) (km/h) (km/h) (km/h)

CUBOIDS [6] 2.54 2.63 378 4.10

PF-GRID [28] 1.88 1.65 3.96 3.07

KF-ICP [33]" 2.59 1.18 3.55 2.56

RBPE-ICP" 1.90 1.31 245 2.55

* - methods working in real-time on the specified hardware configuration.

TABLE VI
COMPARISON OF ORIENTATION ESTIMATION
ACCURACY ON KITTI DATA SET

FULLY VISIBLE PARTIALLY VISIBLE

OBIECTS OBIJECTS
MAE STDEV MAE STDEV
Method (deg) (deg) (deg) (deg)
CUBOIDS [6]" 5.77 4.94 9.12 5.70
PE-GRID [28] 457 4.70 8.95 1.84
KF-ICP [33]" 4.54 2.92 7.72 3.70
RBPF-ICP" 3.72 2.65 5.49 2.56

* - methods working in real-time on the specified hardware configuration.

of the measurement is the sum of the weighting time for each
particle; thus, the object’s processing time is linear with the
number of particles. The same reasoning applies for the entire
scene, composed of objects. The number of control points per
particle is fixed, and the number of particles per object is also
fixed, and therefore, the total running time is dependent only on
the number of objects in the scene.

In our traffic scenario test sequences, the average number
of tracked objects was 6. For each object we set up a fixed
number of 80 particles and a fixed number of 20 control points
per sample. The average processing time of the algorithm was
about 99.83 ms/frame, or about 10 fps.

VI. CONCLUSION

In this paper, we have proposed a stereovision-based ap-
proach for tracking multiple objects in crowded urban traffic
scenarios. The solution relies on measurement information
provided by an intermediate occupancy grid and on free-form
object delimiters extracted from this grid. In order to track
visual appearance-based free-form obstacle representations, we
adopted a particle filter-based mechanism, in which each par-
ticle state is described by two components, i.e., the object
dynamic parameters (position and speed), and its estimated
geometry (a set of key points). The high-dimensionality state-
space problem is solved by using a Rao—Blackwellized solu-
tion, in which the obstacle dynamic properties are estimated
by importance sampling, whereas the geometric properties are
computed analytically by using a Kalman Filter for each key
point. The presented probabilistic tracking approach takes into
consideration the stereo uncertainties introduced by the senso-
rial system.

In order to evaluate the accuracy of the tracking method, we
have performed two types of experiments. In the first case, the
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ground-truth measurements were provided by high-accuracy
GNSS receivers mounted on the ego vehicle and on the target
vehicle. The second set of experiments was performed on the
public raw data set. The proposed solution works in real time
and, compared with the other methods, it was able to estimate
with high accuracy the position, the speed and the geometry of
objects from noisy stereo depth data.

As future work, we propose to improve the accuracy of
our solution by including the intensity information, as in the
optical flow techniques. We also intend to improve the system
processing time by further optimizations.
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