

Abstract—In this paper we propose a new solution for

representing and tracking crowded traffic environments by

using dense stereo data. The proposed method relies on the

information provided by two compact 2.5D grid-based

representations: a classified occupancy grid and an intensity

grid. The measurement data is extracted using a predefined

Policy Tree, which represents a path structure used to

accelerate the object delimiter extraction. The extracted

measurements are given in form of rectangular grid blocks

that are described by three components: a dynamic, a

geometry and an intensity component. We propose a medium

level tracking approach in which the state is estimated for

each block individually. To be able to work with a high

dimensional state space a Rao-Blackwellized particle filter is

used. The proposed solution has several advantages. First, the

data association is performed at the particle level, thus being

handled in a natural way by a weighting-resampling

mechanism. Second, unlike other existing geometry-based

solutions we also incorporate the intensity information in the

tracking process. Finally, the proposed method takes into

account the uncertainties of the stereovision system.

I. INTRODUCTION

Modeling and tracking of dynamic and crowded

environments represents a difficult research task for any

driving assistance system. Usually, the surrounding world of

a moving vehicle is unknown and filled with many objects

of different shapes, types, sizes and speeds. Moreover, in

cluttered environments, such as urban traffic scenes, the

representation module may be affected by occlusions,

unpredictable behavior of the objects or introduced

measurement noises. Therefore, the expectations from an

advanced driver assistance system are high, as such a

system should be able to use the imperfect sensorial

information in order to accurately represent the driving

world and to locate and track the relevant traffic entities.

The general problem of vision-based modeling and

tracking of dynamic environments can be divided into

several main subtasks: acquiring the measurement data,

extracting a set of relevant entities by using specific

representation models and keeping track of these entities

over time. Many stereovision-based methods have been

proposed in the literature. An extensive survey of the past

Andrei Vatavu, Radu Danescu and Sergiu Nedevschi are with the

Technical University of Cluj-Napoca, Computer Science Department (e-mail:

{firstname.lastname}@cs.utcluj.ro). Department address: Computer Science

Department, Str. Memorandumului nr. 28, Cluj-Napoca, Romania. Phone:

+40 264 401484.

decade’s progress in the vision based on-road object

detection and tracking is presented in [1].

Current environment representation and tracking

approaches can be split into two main categories: intensity-

based solutions [3][10] and geometry-based solutions

[4][8][9]. Usually, the intensity-based methods combine the

depth information with the motion cues computed by optical

flow. For example, in [10], the scene flow is computed by

simultaneously extracting the stereo and motion

information. In [3], the primary depth data is directly used

to estimate the 3D-position and 3D-motion for every image

point. To reduce the computational complexity, many

existing approaches map the 3D information into more

compact intermediate structures. Thus, the primary 3D data

is transformed into Occupancy Grids [4-6], Stixel-based

representations [7], Elevation Maps [8] or Octree-based

data structures [9]. In [4], the authors present a geometry-

based method in which the tracking mechanism is applied

directly at the occupancy grid cell level. The occupancy,

position and speed of each cell are estimated by using a

population of particles that can migrate from cell to cell

depending on their motion parameters. An extended method

for tracking fully dynamic elevation maps is described in

[11]. In [2], the color information is incorporated into a 3D

voxel map. Obstacle candidates are extracted by using a

color-space segmentation to group together the similar

voxels. The object motion and pose are estimated by means

of linear Kalman filters.

Other modeling and tracking solutions use higher level

abstractions, aiming to track the most relevant information,

while reducing the processing cost. Most of them

approximate the object shape with simple representations

such as 2D or 3D boxes. However, in some cases, due to

the heterogeneity of the urban infrastructure, the use of

restricted models in the tracking process may lead to

inappropriate results. To overcome this problem, various

solutions for representing and tracking free-form object

representations were proposed. In particular, the authors in

[14] use the laser measurements to build a local 3D grid for

each object. A particle filter is used to estimate the object

position, speed and orientation parameters. Another similar

approach is presented in [13]. The laser information is

accumulated into local grid maps. The authors use a Rao-

Blackwellized particle filter such that the obstacle dynamic

state is estimated by sampling while its local grid map cells

are updated analytically. A stereovision-based solution for

tracking free-form objects is proposed in [12]. The object

motion and its contour information are derived from the

object local occupancy grids. In our previous work described

Modeling and Tracking of Crowded Traffic Scenes by using Policy

Trees, Occupancy Grid Blocks and Bayesian Filters

 Andrei Vatavu, Radu Danescu and Sergiu Nedevschi, Member, IEEE, Members, IEEE

in [15] we present a particle filter based solution that is able

to estimate the position, the speed and the geometry of

objects from noisy stereo depth data. The static and dynamic

obstacles are represented by a set of attributed polygonal

models. The free-form representations are extracted from a

classified occupancy grid by using the previously developed

BorderScanner algorithm [16]. A Rao-Blackwellized

particle filter is used to track both the obstacle position and

its geometry.

In this paper we propose a novel solution for

representing and tracking crowded traffic environments by

using dense stereo data. The proposed method relies on the

information provided by two compact 2.5D grid-based

representations: a classified occupancy grid and an intensity

grid. The measurement data is generated by exploring the

two grids and extracting the most visible information.

Unlike the previous approaches, which generate virtual rays

at each frame and search the interest object cells along these

rays, this work uses Policy Trees to direct the search

process trough the occupancy grid space. By using a

predefined path structure we accelerate the object delimiter

extraction step and solve two main issues: the virtual ray re-

computation and the overlapping subproblems (when the

same grid cell is accessed several times in the searching

process). The extracted measurements are given in form of

rectangular grid blocks. Each surface patch is composed by

NxN cells and is described by three components: a dynamic

component, a geometry component (a vector of NxN

occupancy values) and an intensity component (a vector of

NxN grayscale values). Unlike the other object level

tracking solutions, we propose a medium level tracking

approach in which the state is estimated for each block

individually. To be able to work with high dimensional state

space a Rao-Blackwellized particle filter is used. Thus, the

position and speed of each entity is tracked by a sampling

mechanism, the geometry part is updated by using binary

Bayes filters while the intensity component is updated by

using separate 1D Kalman Filters for each block cell. The

proposed solution has several advantages. First, the data

association is performed at the particle level being handled

in a natural way by a weighting-resampling mechanism.

Second, unlike other existing geometry-based solutions we

incorporate also the color information in the tracking

process. Finally, the proposed method takes into account the

uncertainties of the stereovision system.

The paper is structured as follows: the next section

describes the overall system architecture, the grid block

extraction by using Policy Tree is presented in the section

III, section IV details the proposed tracking approach

including its main steps, while the last two sections show

the experimental results and the conclusion about this work.

II. SYSTEM OVERVIEW

The system processing flow can be decomposed into tree

main stages: Intermediate Representation, Measurement

Extraction and Tracking (see Fig.1).

Figure 1. System Overview.

The Intermediate Representation module consists in

mapping the 3D dense information into two 2.5D grid-

based representations: Occupancy Grid and Intensity Grid.

Both maps have the same size and resolution and can be

regarded as a projection of the 3D data into a more compact

bird-eye view space. The raw occupancy grid cells are

computed by processing a stereovision-based elevation map

(see Fig. 2) in which each cell stores the information of its

height and type (road, object or traffic isle) [8]. In the case

of the Intensity Grid, the cell values are estimated as the

average intensity of its associated 3D points.

The Measurement Extraction module uses the two grid

maps to extract a set of rectangular NxN blocks. In the

initialization step we pre-compute a Policy Tree. The Policy

Tree is used to store all possible paths between the ego-

vehicle’s position and the most visible object points,

through the grid. The block entities are extracted by

exploring the Policy Tree with a depth-first-search

technique.

Figure 2. Intermediate Representations. a) An image from the traffic scene.

b) The grayscale intensity grid c) The classified occupancy grid. The grid cells

are labeled as Object (red), Road (blue) and Traffic Isle (yellow).

Figure 3. Generating the Policy Tree. Top: a simple scenario containing

only three rays. The grid points that are processed more than once by deiferent

rays maintain a single copy in the tree. The cell colors show how they are

assigned to the tree branches. Bottom: the resulted structure.

In the Tracking stage we estimate the optimal state

parameters for each individual grid block using a Rao-

Blackwellized Particle Filter. The position and speed

parameters are estimated by a weighting-resampling

mechanism, the occupancy values are updated by using

binary Bayes filters while the intensity values are updated

by using individual Kalman Filters for each block cell. The

representation and tracking modules will be described in

detail in the next sections.

III. EXTRACTING GRID BLOCKS BY USING POLICY TREES

The purpose of this stage is to extract a set of the most

visible (not occluded) rectangular patches – grid blocks.

Each block can be regarded as a 2D surface patch that is

centered into an object contour point, and includes the

information about the object position, occupancy and

intensity component. The extracted blocks are used as the

measurement information for the subsequent tracking

algorithm. Thus, instead of performing the data association

and filtering at the object level we split the object model

into smaller entities, each entity being tracked separately.

A. Extracting Object Contours by using Policy Trees

In our previous work [16] we introduced the

BorderScanner algorithm for extracting object contours,

Figure 4. Object delimiters extraction by exploring Policy Trees. a) An

image from the traffic scene. b) A Policy Tree constructed at a lower

resolution. For a better visibility each tree branch has a diferent color. c) A

Policy Tree covering the entire grid space. Each grid cell is assigned to a tree

node. d) The result of exploring the occupancy grid via traversing the tree

structure. Black values denote occupied cells. The occupancy grid corresponds

to the traffic scene (a).

also referred to as “object delimiters”. The main idea of the

algorithm is to extract a contour },...,{ 1 NCm ccC = for each

object by accumulating the most visible grid cells
ic that are

occupied. This is achieved by generating a virtual ray which

extends from the ego-vehicle position and traverses the

occupancy grid in a radial direction with fixed increments.

At each step, the closest occupied point along the virtual ray

is accumulated into the contour list Cm. The first

observation is that in order to cover the entire space it is

necessary to scan the grid surface at a high resolution.

Moreover, the scanning axes and the position of the

candidate object cells along these axes are re-computed at

each frame. The second observation is that, at high

scanning resolutions, the occupancy gird cells that are close

to the origin position are likely to be traversed more than

once. To minimize the algorithm complexity and to solve

the overlapping sub-problems we introduced a Policy Tree,

which is regarded as a predefined path structure that is used

to explore the occupancy grid space. The object delimiter

extraction algorithm is described by the two main phases:

1) Policy Tree Creation: The idea of creating path

search data structures is widely used in the context of

navigation or path planning applications [18][19]. In our

case we construct a specific tree-based structure T that

stores all possible paths starting from the point of origin

(the camera position). A node si in the tree T can be

described as a policy s(ci) that determines the search

position of the next grid cell cj given the position of the

current cell ci:

]..1[],..1[),(NGjNGicsc ij ∈∈= (1)

ALGORITHM I

CREATING THE POLICY TREE

1: s0 ← initial node as a starting position

2: foreach virtual ray α

3: sgoal ← the farthest point along the ray α

4: sc ← s0

5: while (sc ≠ sgoal):

6: //Bresenham Algorithm[20]

7: sc ← getNextCellAlongTheRay(α)

8: if (exists another ray
1α containing sc)

9: //keep a single copy of sc

10: move sc node from
1α to α

11: else

12: add(sc)

where NG represents the grid size. Therefore, every node si

in the tree is associated to a grid cell ci and also contains a

reference to the next node. The root of the tree s0 stores the

position of the observation point, while the tree leafs

correspond to the grid boundary cells. The grid points that

are processed more than once maintain a single copy in the

tree (see Fig. 3). As the search space has the same size and

the same resolution in all frames, the Policy Map is

constructed only once, in the initialization step (Algorithm

I). The generated structure can also be stored as a map of

linked lists, each list denoting a tree branch.

2) Exploration: The exploration step is performed at

each frame by using the generated Policy Tree. The purpose

of this step is to find all closest object points that are

occupied (see Fig. 4). In order to accumulate the cells of

interest we use a depth-first search strategy starting from

the root of the tree and traversing as far as possible along

each branch until an occupied cell is discovered. All the

object points that are found are accumulated into a contour

list:
},...,{ 1 NCm ccC =

.

B. Grid Block Entities

Each accumulated cell in the contour list
mC is used as

a seed point for constructing a so called “grid block”. The

idea is to compute a set of independent medium level

entities incorporating the information about the object

position, color and geometry (see Fig. 5). For each selected

contour point we define a window of NxN cells, centered in

the point’s position. Then we use the defined window to

extract a vector of NxN occupancy values from the

occupancy grid and a vector of NxN grayscale values from

the intensity grid. Therefore, a grid block model is

described by the following parameters:

Figure 5. Grid Block model. Left: the Occupancy Grid with the extracted

delimiters. Middle: The Intensity Grid. Right: the three components defining

the estimated state: position, occupancies and grayscale values.

• The dynamic component T

zx vvzxS],,,[= being

described by the position),(zxPc
 and speed parameters

),(zx vvV
r

. The block position is given by the position of

its center point),(zxPc
 in the car coordinate system.

• The geometry component, which is described by a set of

occupancy values },...,,{ 21 KoooO = , where K represents

the number of neighbor cells included in a NxN window.

• The intensity component specifying a vector of grayscale

intensity values },...,,{ 21 KgggG = . Both sets G and O

have the same size NNK ⋅= .

Therefore, we can describe the appearance part of each

block as a collection of cells]}..1[|),({ Kigob iii = , where

each cell is defined by a pair of occupancy oi and grayscale

gi terms. Considering the parameters described above, at

time t the overall grid block state is defined as:

 T

KKzxt gggooovvzxX],...,,,,...,,,,,,[2121= (2)

and can be written in a more compact form as:

 T

t GOSX],,[= (3)

IV. GRID BLOCK TRACKING

The purpose of the tracking mechanism is to estimate

the optimal state
tX of each individual block entity. The

problem can be formulated as a Bayes filter, which aim to

recursively update the posterior probability distribution

)...,|(21 tt ZZZXp given all noisy measurements

}...,,{ 21:1 tt ZZZZ = up to the present time t. Typically,

particle-based filtering techniques [21] are used as an

effective means to work with multi-modal distributions.

However, a disadvantage in the case of particle filtering

algorithms is that they are not suitable for high-dimensional

state spaces, where the complexity tends to grow

exponentially with the number of state parameters. To keep

a low computational complexity we adopt a Rao-

Blackellized Particle Filter [22]. Therefore, we apply the

“Rao-Blackwellization” process to estimate a part of the

object state analytically by factorizing the posterior

distribution)|(:1 tt ZXp as follows:

),|,()|()|(:1:1:1 tttttttt ZSGOpZSpZXp = (4)

The first term)|(:1 tt ZSp describes the grid block position

and speed posterior probability and is approximated by a set
of weighted particles:

]}..1[,,{)|(:1 NiwSZSp i

t

i

ttt =≈ (5)

Each particle i

tS represents a hypothesis for the position

and velocity of a given block entity.

The second factor),|,(:1 tttt ZSGOp describes the block

appearance posterior probability conditioned on its

motion
t

S . We consider that the occupancy
tO and

intensity
tG components are conditionally independent given

t
S and

tZ :1
:

),|(),|(),|,(:1:1:1 tttttttttt ZSGpZSOpZSGOp = (6)

The occupancy term),|(:1 ttt ZSOp is recursively

updated using a binary Bayes filter for each individual block

cell. The intensity factor),|(:1 ttt ZSGp is estimated with

1D Kalman Filters (one per block cell). The sample state
can be defined now as:

]}..1[,],,,[|{ NiGOwSqq
Ti

t

i

t

i

t

i

t

i

t

i

t == (7)

Next, we will describe the main steps of the proposed
tracking solution.

A. Initialization

The initialization step generates an initial prior

probability)(0Xp for each newly detected target. This is

achieved by drawing a set of random hypotheses around
each unassociated block measurement:

]}..1[,],,,[|{)(0000000 NiGOwSqqXp
Tiiiiii

==≈ (8)

The object occupancy i
O0

 and intensity iG0
components

are initialized with the corresponding observation values.

B. State Prediction

The aim of this step is to predict the current state
tX

given the previous information
1−tX and the motion model

)|(1−tt XXp . Each particle is moved based on its state

transition probability. Additionally, each hypothesis state is
altered according to a random noise. Before applying the
prediction step we must also consider the ego-car motion
information. As the ego-vehicle parameters are provided
through the CAN bus, we use this information to modify the
position of each particle. The position and

speed T

tztxttt vvzxS],,,[,,= of each hypothesis is predicted

given its previous state
1−tS according to the same linear

motion model previously described in [15]:

C. Measurement Update

The purpose of the measurement update step is to assign
importance weights to the predicted particles according to
how well these hypotheses match the measurement data.

)|(i

ttt qXZp = (9)

Additionally, each particle’s occupancy and intensity
parameters are updated analytically. The occupancy values
are estimated by using binary Bayes filters while the gray
intensities are updated by means of Kalman filters. For our
tracking solution we assume that the measurement data is
given as a list of blocks extracted from the two grid-based
representations (occupancy grid and intensity grid). (see
Fig. 6). For each block, the measurement vector is defined
by three main components:

 Tg

t

o

t

p

tt ZZZZ],,[= (10)

where p

tZ describes the measurement grid block positions,

o

tZ denotes the observed occupancy values and g

tZ

represent the measured intensity component. We can
express the measurement model as:

Figure 6. From the raw measurements to the grid blocks. a) Left camera

image b) The Intensity Grid c) The detected block entities with assigned gray

values extracted from the Intensity Grid (b). d) The raw occupancy values.

Black means occupied. e) The computed occupancy probabilities according to

the used Forward Probability Model. White colors indicate occupied cells. f)

The same block entities as in (c) represented by occupancies from (e). Even the

extracted measurement block entities in (c) and (f) are visually grouped into

continuous object delimiters, they are tracked individually.

)|,,()|(t

g

t

o

t

p

ttt XZZZpXZp = (11)

By assuming that all measurement components are
independent we obtain:

)|()|()|()|(t

g

tt

o

tt

p

ttt XZpXZpXZpXZp = (12)

Therefore, we estimate the particle weights by
considering the three terms provided by the equation (12).

1) Computing the Stereovision Uncertainties

In order to take into account the noises provided by the
stereovision system, the uncertainty model should be
defined. By using an error model similar to one described in

[23], we approximate the longitudinal error
zσ and the

lateral
xσ error as:

z

x

fb

z z
x

d
z

⋅
=

⋅

⋅
=

σ
σ

σ
σ ,

2

 (13)

where b is the distance between the two cameras (baseline),
f is the focal distance , x and z are the coordinates of a point

in 3D and
dσ represents the disparity error in pixels. The

error standard deviations are estimated for all grid cells and
are stored into a look-up table.

2) Defining the Inverse Sensor Model

In order to update the occupancy probability of each

block cell)(kop we require an inverse sensor model

)|(S

txz Zcp , where
xzc is a new occupancy probability

stored at the position (x,z) in the grid and S

tZ represents the

stereo measurements. As the raw observations (see Fig. 6.d)

are affected by the stereo uncertainties we consider that

each grid cell is described by a probability distribution with

the standard deviations defined in the previous step. We are

interested to determine the occupancy value of a certain cell

xzc given also the probabilities of its neighbor

measurements. As in the Kernel Density Estimation

approaches that use Parzen windows [24] we estimate the

occupancy of a cell
xzc by placing a window of size

xσ2 x
zσ2 at the position of

xzc and then, determine, for all

occupied neighbor cells that fall within the window, what is

the contribution of each observation
ijc to the cell

xzc . The

occupancy values
xzc are approximated as (see Fig.6.e):

 









 −
+

−
−+=

−=

+=

−=

∑ ∑= zx

z

z

x

x

izjx
zi

zi

xj

xj zx

S

txz eZcp
σσ

σ

σ

σ

σ σπσϖ

22)()(

2

1

2

11
)|((14)

where ϖ is the sum of all
jiσπσ2/1 values computed for

each neighbor cell
ijc .

3) Particle Weighting

Having the measurement information given as a list of

extracted blocks },...,,{ ,2,1, Ntttt ZZZZ = , for each particle

i

tq its weight iw is determined as follows:

a) Position weights: for the position component we
compute a distance between the particle and the closest

corresponding measurement block
ktZ ,

:

),(min),(,
}..1{

mt

i

t
Nm

t

i

t ZqdZqd
∈

= (15)

The distance to the closest measurement),(t

i

t Zqd can

be decomposed into two x and z components (dx, dz) where
22),(dzdxZqd t

i

t += . It must be noted that, the particle-

to-measurement associations are determined by using a pre-
computed distance transform map where each cell in the
map stores the information regarding the closest
measurement block. Therefore, for each hypothesis, the
corresponding measurement is found in O(1) by
superimposing the particle model on the distance map. The

weight received by the particle position i

pw is estimated by

converting the distance metric according to:

 










+−

===
2

2

2

2

2

1

2

1
)|(zx

dzdx

zx

i

t

g

t

i

p eqXZpw
σσ

σπσ
 (16)

b) Occupancy weights: for the occupancy component we

define a dissimilarity metric),(,

o

mt

i

t Zqd by calculating the

normalized sum of absolute differences between

corresponding occupancy elements in the particle i

ko and

the measurement cells m

ko .

 KopopZqd m

k

i

k

o

mt

i

t /)()(),(, −= (17)

where i is the particle index, m represents the measurement

block index,)(kop denotes the occupancy probability of a

cell
ko , k is the index of the occupancy element]..1[Kk ∈ ,

and K represents the total number of occupancy values in a
given particle or measurement block. The resulted heuristic
metric is used to estimate the occupancy weight:












−===

2

,

2
),(

2

1
exp

2

1
)|(

o

o

mt

i

t

o

i

t

o

t

i

o

Zqd
qXZpw

σπσ
 (18)

c) Intensity weights: the same strategy is applied for the
particle gray values. The difference here is that we are
taking into account only the intensity of occupied cells
(belonging to obstacles). The gray dissimilarity measure is
defined as:

)/(),(, occg

m

k

i

k

g

mt

i

t NNggZqd ⋅−= (19)

where Ng represents the number of possible gray intensities
and Nocc is the number of cells that are occupied in both
particle and measurement block. The intensity weight is
computed according to:












−===

2

,

2
),(

2

1
exp

2

1
)|(

g

g

mt

i

t

g

i

t

g

t

i

g

Zqd
qXZpw

σπσ
 (20)

As described in the equation (12), the overall particle

weight
iw is determined as:

 i

g

i

o

i

p

i
wwww ⋅⋅= (21)

4) Updating the Occupancy Component

This step updates the occupancy component

},...,,{ 21

i

K

iii

t oooO = for each hypothesis i

tq . The update

method relies on the inverse sensor model)|(S

txz Zcp

previously described in the step 2. The computed values are
assigned to the extracted block measurements so that:

)|()|(S

txz

S

t

m

k ZcpZop = (22)

where k is the index of the occupancy element]..1[Kk ∈ , m

represents the index of the measurement block, and cxz is
the corresponding grid cell. Assuming that the occupancy of
individual cells is independent we can decompose the
update problem into many binary estimation subproblems.
The new measurements can be recursively incorporated for
each individual cell by using a binary Bayes filter. As
described in [17], this can be expressed in the log-odds
representation as:

)(

)(1
log

)|(1

)|(
log,1, m

k

m

k

S

t

m

k

S

t

m

ki

kt

i

kt
op

op

Zop

Zop
ll

−
+

−
+=

−
 (23)

where i

ktl ,
represents the log-odds ratio defined according to:

)|(1

)|(
log

:1

:1
, S

t

i

k

S

t

i

ki

kt
Zop

Zop
l

−
= (24)

The term i

ktl ,1−
 denotes the previous log-odds value. The

second term in the equation (23) describes the inverse
sensor model while de last term represents the prior log-
odds ratio. The new occupancy probability of a given

element i

ko in the particle i

tq can be estimated according to:

))1(1()|(1

:1
, −

+−=
i

ktlS

t

i

k eZop (25)

.5) Updating the Particle’s Intensity Values

This step updates the particle grayscale component

},...,,{ 21

i

K

iii

t gggG = with the new measurements. For each

grayscale element we use a 1D Kalman filter to estimate its

new mean and variance),ˆ(g

i

kg σ . The new measurements

),(m

m

kg σ are incorporated according to:

1

22

2

22

22
11

,ˆ

−














+=

+

+
=

mg

g

mg

m

kg

i

kmi

k

gg
g

σσ
σ

σσ

σσ
 (26)

The two variances are tuned experimentally.

D. State Estimation

As the result of measurement update step we have
determined the new weights of the particle population and
estimated the belief of each particle about its occupancy and
grayscale intensity. The current posterior density can be
estimated now as:

 i

t

N

i

i

t XwX ∑
=

=
1

)
 (27)

E. Resampling and Merging

The resampling stage consists in drawing from the

previous sample distribution according to a probability

proportional to the particle weights. As the result, the

particles with high weights are multiplied by replacing the

particles with low weights. Also, at this stage we decide

whether the similar trackers should be merged. For merging

the particle distributions we use a separate map to

accumulate all overlapping candidates. When a new block

state is estimated, its position is registered into the

overlapping map. In the resampling step, we test if in the

same estimated grid position there is another tracklet. The

candidates having the similar speed vectors are subjected to

the merging process. As all tracklets share the same

measurement space we use all particles of the selected

candidates to estimate the new state. The new population of

particles will be drawn by sampling from all candidate

distributions.

V. EXPERIMENTAL RESULTS

The proposed method has been tested on various traffic

scenarios in Cluj-Napoca, Romania. For our tests we have

used a 2.66GHz Intel Core 2 Duo Computer with 2GB of

RAM. Both input grids (occupancy and intensity grid) have

the same size of 240 rows x500 columns (0.1 m x 0.1 m

Figure 7. Modeling and Tracking results. a) An image from the traffic

scene. b) The corresponding population of particles projected into the grid

space (top view). Each particle is represented as a point. High intensities

indicate high weights. c) The estimated grid blocks described by their

occupancy values and the assigned speed vectors. d) The result projected in the

image space. Each red segment corresponds to an extracted measurement and

has the same height as the associated object. e) A traffic scenario including a

partially visible car.

cells). Some qualitative results including intermediate

processing steps are presented in the Fig. 7. Fig. 7.b shows

how the entire population of particles is projected in the

grid space (top view). Each particle is represented as a

point. The particles are weighted based on how well they

match the new observations. High intensities indicate high

weights. Fig. 7.c illustrates the estimated grid blocks and

the assigned speed vectors. Fig. 7.d shows how the resulted

dynamic environment representation is projected in the

image space. Each red segment corresponds to an extracted

measurement and has the same height as the associated

object. Another traffic scenario including partial visible

obstacles is shown in Fig. 7.e. We have compared the

performance of the proposed Policy Tree based delimiter

extraction solution with a previously developed

BorderScanner method [16] in terms of the execution time.

Besides the space size, the Border Scanner approach

complexity depends also on the radial step size. For

example, with a radial step of 0.01 radians the average

processing time is about 5ms, however when covering the

entire 240x500 grid space, the running time increases at

22.8 ms. In comparison with the BorderScanner method,

the Policy Tree based approach reduces the delimiter

extraction time to 3.63ms / frame. Fig. 8 presents a

comparison between the proposed tracking solution (RBPF-

TABLE I

SPEED ESTIMATION ACCURACY

Accuracy Metric GRID-BLOCKS ICP-KALMAN [25]

MAE (km/h) 2.97 3.7

Figure 8. Comparison between the proposed Grid Block representation and

tracking approach and the existing ICP-KALMAN method [25].

Grid-Blocks) and an existing ICP-based object tracking

approach (ICP-KALMAN) [25]. The test implies a test

vehicle passing from right to left, being in the field of view

for 26 frames. The ground truth speed is provided by a high

accuracy GNSS device, mounted on the test vehicle. The

target car velocity was estimated as the average speed of its

associated block entities. The mean absolute error of the

speed estimation was 2.97 km/h for the proposed method

and 3.7 km/h for the ICP-KALMAN solution [25]. In the

case of urban traffic experiments, the average number of

tracked grid blocks was 486. For each block we set a fixed

size of 3x3 cells and a fixed number of 40 particles. The

average processing time of the proposed tracking solution

was about 194ms.

VI. CONCLUSIONS

In this paper we presented a new stereovision based
method for modeling and tracking crowded traffic scenes.
The method uses two grid-based representations, namely an
intensity grid and a classified occupancy grid. In order to
accelerate the measurement extraction process and to avoid
the overlapping subproblems, a Policy Tree is employed.
The measurements are given in form of rectangular grid
blocks, comprising a dynamic part, a geometry part and an
intensity part. The proposed medium level tracking solution
is based on a Rao-Blackwellized particle filter able to
process high dimensional state spaces. This allows handling
the data association at particle level in a natural manner.
The proposed method is also able to deal with the
uncertainties of the stereovision system and to incorporate
the intensity information into the estimated state. As future
work, it would be important to extend the tracked state with
the height information. The system processing time can also
be improved by further optimizations.

REFERENCES

[1] S. Sivaraman, M. M. Trivedi, "Looking at Vehicles on the Road: A

Survey of Vision-Based Vehicle Detection, Tracking, and Behavior

Analysis", IEEE Trans. on Intell. Transp. Syst., vol.14, no.4, pp.1773-

1795, Dec. 2013.

[2] A. Broggi, S. Cattani, M. Patander, M. Sabbatelli and P. Zani, "A full-

3D voxel-based dynamic obstacle detection for urban scenario using

stereo vision", in Proc. of IEEE ITSC 2013, pp.71-76, 6-9 Oct. 2013.

[3] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion of

stereo and motion for robust environment perception,” in DAGM ’05,

2005, pp. 216-223.

[4] R. Danescu, F. Oniga, S. Nedevschi, "Modeling and Tracking the

Driving Environment With a Particle-Based Occupancy Grid," IEEE

Trans. on Intell. Transp. Syst., vol.12, no. 4, pp.1331-1342, Dec. 2011.

[5] M. Perrollaz, J.-D. Yoder, A. Nègre, A. Spalanzani, and C. Laugier, "A

visibility-based approach for occupancy grid computation in disparity

space", IEEE Transactions on Intelligent Transportation Systems, vol.

13, no. 3, pp. 1383–1393, Sep. 2012.

[6] Thien-Nghia Nguyen, B. Michaelis, A. Al-Hamadi, M. Tornow, M.

Meinecke, "Stereo-Camera-Based Urban Environment Perception Using

Occupancy Grid and Object Tracking", in IEEE Transactions on

Intelligent Transportation Systems, vol.13, no.1, pp.154-165, 2012

[7] D. Pfeiffer and U. Franke, "Modeling Dynamic 3D Environments by

Means of The Stixel World," IEEE Intelligent Transportation Systems

Magazine, vol.3, no.3, pp.24,36, 2011.

[8] F. Oniga and S. Nedevschi, “Processing Dense Stereo Data Using

Elevation Maps: Road Surface, Traffic Isle, and Obstacle Detection”,

IEEE Transactions on Vehicular Technology, vol. 59, vo. 3, March

2010, pp. 1172-1182.

[9] M.A.Garcia and A.Solanas, "3D Simultaneous Localization and

Modeling from Stereo Vision", in Proc. of IEEE ICRA, New Orleans,

USA, April-May 2004, 847-853, ISBN: 0-7803-8233-1.

[10] S. Vedula, S. Baker, P. Rander, R. T. Collins, T. Kanade, “Three-

Dimensional Scene Flow”, IEEE Trans. Pattern Anal. Mach. Intell.

27(3): 475-480 (2005)

[11] R. Danescu, S. Nedevschi, “A Particle-Based Solution for Modeling and

Tracking Dynamic Digital Elevation Maps”, IEEE Transactions on

Intelligent Transportation Systems, vol.15, no.3, pp.1002-1015, June

2014.

[12] J. Aue, M.R. Schmid, T. Graf, J. Effertz, "Improved object tracking from

detailed shape estimation using object local grid maps with stereo", in

Proc. of ITSC 2013, pp.330,335, 6-9 Oct. 2013

[13] M. Schutz, N. Appenrodt, J. Dickmann, K. Dietmayer, "Simultaneous

tracking and shape estimation with laser scanners", in Proc. of 2013

16th International Conference on Information Fusion (FUSION),

pp.885,891, 9-12 July 2013

[14] P. Steinemann, J. Klappstein, J. Dickmann, F. von Hundelshausen, and

H. Wunsche, "Geometric-Model-Free Tracking of Extended Targets

Using 3D-LIDAR-Measurements", in Proc. of SPIE, Vol. 8379, pp.

83790C-83790C-12, 2012.

[15] A. Vatavu, R. Danescu, and S. Nedevschi, "Tracking multiple objects in

traffic scenarios using free-form obstacle delimiters and particle filters",

in Proc. of. ITSC 2013, pp.1346,1351, 6-9 Oct. 2013

[16] A. Vatavu, S. Nedevschi, and F. Oniga, “Real Time Object Delimiters

Extraction for Environment Representation in Driving Scenarios”, In

Proc. of ICINCO-RA 2009, Milano, Italy, 2009, pp 86-93.

[17] S. Thrun, W. Burgard, and D. Fox, "Probabilistic robotics", in MIT

press, 2005.

[18] C. Fulgenzi, A. Spalanzani, C. Laugier, "Probabilistic motion planning

among moving obstacles following typical motion patterns," in Proc of

IROS 2009, pp.4027-4033, 10-15 Oct. 2009

[19] E. Lu, W.-C. Lee, and V. Tseng, "Mining fastest path from trajectories

with multiple destinations in road networks", Knowledge and

Information Systems, pp. 1–29

[20] J. E. Bresenham, "Algorithm for Computer Control of a Digital Plotter",

IBM Systems Journal 4, No.1, 25-30, 1965.

[21] M. Isard and A. Blake. Condensation, “Conditional density propagation

for visual tracking”, in International Journal of Computer Vision,

29(1):5–28, 1998.

[22] A. Doucet, N. De Freitas, K. Murphy, S. Russell, "Rao–Blackwellised

particle filtering for dynamic Bayesian networks" in Proc. of the

Sixteenth conference on Uncertainty in artificial intelligence, 2000,

pp. 176–183.

[23] Gallup, D.; Frahm, J.-M.; Mordohai, P.; Pollefeys, M., "Variable

baseline/resolution stereo," in Proc. of CVPR 2008, pp.1-8, 23-28, 2008
[24] E. Parzen, "On Estimation of a Probability Density Function and Mode",

The Annals of Mathematical Statistics 33, no. 3, pp 1065--1076, 1962
[25] A. Vatavu, S. Nedevschi, "Modeling Unstructured Environments with

Dynamic Persistence Grids and Object Delimiters in Urban Traffic

Scenarios", in Proc. of IV 2013, Gold Coast, Australia, 23-26 June,

2013, pp. 505 – 510.

