
  

  

Abstract—In this paper we propose a new solution for 

representing and tracking crowded traffic environments by 

using dense stereo data. The proposed method relies on the 

information provided by two compact 2.5D grid-based 

representations: a classified occupancy grid and an intensity 

grid. The measurement data is extracted using a predefined 

Policy Tree, which represents a path structure used to 

accelerate the object delimiter extraction. The extracted 

measurements are given in form of rectangular grid blocks 

that are described by three components: a dynamic, a 

geometry and an intensity component. We propose a medium 

level tracking approach in which the state is estimated for 

each block individually. To be able to work with a high 

dimensional state space a Rao-Blackwellized particle filter is 

used. The proposed solution has several advantages. First, the 

data association is performed at the particle level, thus being 

handled in a natural way by a weighting-resampling 

mechanism. Second, unlike other existing geometry-based 

solutions we also incorporate the intensity information in the 

tracking process. Finally, the proposed method takes into 

account the uncertainties of the stereovision system. 

 

I. INTRODUCTION 

Modeling and tracking of dynamic and crowded 

environments represents a difficult research task for any 

driving assistance system. Usually, the surrounding world of 

a moving vehicle is unknown and filled with many objects 

of different shapes, types, sizes and speeds. Moreover, in 

cluttered environments, such as urban traffic scenes, the 

representation module may be affected by occlusions, 

unpredictable behavior of the objects or introduced 

measurement noises. Therefore, the expectations from an 

advanced driver assistance system are high, as such a 

system should be able to use the imperfect sensorial 

information in order to accurately represent the driving 

world and to locate and track the relevant traffic entities.  

The general problem of vision-based modeling and 

tracking of dynamic environments can be divided into 

several main subtasks: acquiring the measurement data, 

extracting a set of relevant entities by using specific 

representation models and keeping track of these entities 

over time. Many stereovision-based methods have been 

proposed in the literature. An extensive survey of the past 
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decade’s progress in the vision based on-road object 

detection and tracking is presented in [1].  

Current environment representation and tracking 

approaches can be split into two main categories: intensity-

based solutions [3][10] and geometry-based solutions 

[4][8][9]. Usually, the intensity-based methods combine the 

depth information with the motion cues computed by optical 

flow. For example, in [10], the scene flow is computed by 

simultaneously extracting the stereo and motion 

information. In [3], the primary depth data is directly used 

to estimate the 3D-position and 3D-motion for every image 

point.  To reduce the computational complexity, many 

existing approaches map the 3D information into more 

compact intermediate structures. Thus, the primary 3D data 

is transformed into Occupancy Grids [4-6], Stixel-based 

representations [7], Elevation Maps [8] or Octree-based 

data structures [9]. In [4], the authors present a geometry-

based method in which the tracking mechanism is applied 

directly at the occupancy grid cell level. The occupancy, 

position and speed of each cell are estimated by using a 

population of particles that can migrate from cell to cell 

depending on their motion parameters. An extended method 

for tracking fully dynamic elevation maps is described in 

[11]. In [2], the color information is incorporated into a 3D 

voxel map. Obstacle candidates are extracted by using a 

color-space segmentation to group together the similar 

voxels. The object motion and pose are estimated by means 

of linear Kalman filters. 

Other modeling and tracking solutions use higher level 

abstractions, aiming to track the most relevant information, 

while reducing the processing cost. Most of them 

approximate the object shape with simple representations 

such as 2D or 3D boxes.  However, in some cases, due to 

the heterogeneity of the urban infrastructure, the use of 

restricted models in the tracking process may lead to 

inappropriate results. To overcome this problem, various 

solutions for representing and tracking free-form object 

representations were proposed. In particular, the authors in 

[14] use the laser measurements to build a local 3D grid for 

each object. A particle filter is used to estimate the object 

position, speed and orientation parameters. Another similar 

approach is presented in [13]. The laser information is 

accumulated into local grid maps. The authors use a Rao-

Blackwellized particle filter such that the obstacle dynamic 

state is estimated by sampling while its local grid map cells 

are updated analytically. A stereovision-based solution for 

tracking free-form objects is proposed in [12]. The object 

motion and its contour information are derived from the 

object local occupancy grids. In our previous work described 
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in [15] we present a particle filter based solution that is able 

to estimate the position, the speed and the geometry of 

objects from noisy stereo depth data. The static and dynamic 

obstacles are represented by a set of attributed polygonal 

models. The free-form representations are extracted from a 

classified occupancy grid by using the previously developed 

BorderScanner algorithm [16]. A Rao-Blackwellized 

particle filter is used to track both the obstacle position and 

its geometry. 

In this paper we propose a novel solution for 

representing and tracking crowded traffic environments by 

using dense stereo data. The proposed method relies on the 

information provided by two compact 2.5D grid-based 

representations: a classified occupancy grid and an intensity 

grid. The measurement data is generated by exploring the 

two grids and extracting the most visible information. 

Unlike the previous approaches, which generate virtual rays 

at each frame and search the interest object cells along these 

rays, this work uses Policy Trees to direct the search 

process trough the occupancy grid space. By using a 

predefined path structure we accelerate the object delimiter 

extraction step and solve two main issues: the virtual ray re-

computation and the overlapping subproblems (when the 

same grid cell is accessed several times in the searching 

process). The extracted measurements are given in form of 

rectangular grid blocks. Each surface patch is composed by 

NxN cells and is described by three components: a dynamic 

component, a geometry component (a vector of NxN 

occupancy values) and an intensity component (a vector of 

NxN grayscale values). Unlike the other object level 

tracking solutions, we propose a medium level tracking 

approach in which the state is estimated for each block 

individually. To be able to work with high dimensional state 

space a Rao-Blackwellized particle filter is used. Thus, the 

position and speed of each entity is tracked by a sampling 

mechanism, the geometry part is updated by using binary 

Bayes filters while the intensity component is updated by 

using separate 1D Kalman Filters for each block cell. The 

proposed solution has several advantages. First, the data 

association is performed at the particle level being handled 

in a natural way by a weighting-resampling mechanism. 

Second, unlike other existing geometry-based solutions we 

incorporate also the color information in the tracking 

process. Finally, the proposed method takes into account the 

uncertainties of the stereovision system. 

The paper is structured as follows: the next section 

describes the overall system architecture, the grid block 

extraction by using Policy Tree is presented in the section 

III, section IV details the proposed tracking approach 

including its main steps, while the last two sections show 

the experimental results and the conclusion about this work. 

II. SYSTEM OVERVIEW 

The system processing flow can be decomposed into tree 

main stages: Intermediate Representation, Measurement 

Extraction and Tracking (see Fig.1). 

 

 
Figure 1.   System Overview. 

The Intermediate Representation module consists in 

mapping the 3D dense information into two 2.5D grid-

based representations: Occupancy Grid and Intensity Grid. 

Both maps have the same size and resolution and can be 

regarded as a projection of the 3D data into a more compact 

bird-eye view space. The raw occupancy grid cells are 

computed by processing a stereovision-based elevation map 

(see Fig. 2) in which each cell stores the information of its 

height and type (road, object or traffic isle) [8]. In the case 

of the Intensity Grid, the cell values are estimated as the 

average intensity of its associated 3D points. 

The Measurement Extraction module uses the two grid 

maps to extract a set of rectangular NxN blocks. In the 

initialization step we pre-compute a Policy Tree. The Policy 

Tree is used to store all possible paths between the ego-

vehicle’s position and the most visible object points, 

through the grid.  The block entities are extracted by 

exploring the Policy Tree with a depth-first-search 

technique.  

 
Figure 2.   Intermediate Representations. a) An image from the traffic scene. 

b) The grayscale intensity grid c) The classified occupancy grid. The grid cells 

are labeled as Object (red), Road (blue) and Traffic Isle (yellow). 

 

  



  

 
Figure 3.   Generating the Policy Tree. Top: a simple scenario containing 

only three rays. The grid points that are processed more than once by deiferent 

rays maintain a single copy in the tree. The cell colors show how they are 

assigned to the tree branches. Bottom: the resulted structure. 

In the Tracking stage we estimate the optimal state 

parameters for each individual grid block using a Rao-

Blackwellized Particle Filter. The position and speed 

parameters are estimated by a weighting-resampling 

mechanism, the occupancy values are updated by using 

binary Bayes filters while the intensity values are updated 

by using individual Kalman Filters for each block cell. The 

representation and tracking modules will be described in 

detail in the next sections. 

III. EXTRACTING GRID BLOCKS BY USING POLICY TREES 

The purpose of this stage is to extract a set of the most 

visible (not occluded) rectangular patches – grid blocks. 

Each block can be regarded as a 2D surface patch that is 

centered into an object contour point, and includes the 

information about the object position, occupancy and 

intensity component. The extracted blocks are used as the 

measurement information for the subsequent tracking 

algorithm. Thus, instead of performing the data association 

and filtering at the object level we split the object model 

into smaller entities, each entity being tracked separately. 

 

A.  Extracting Object Contours by using Policy Trees 

In our previous work [16] we introduced the 

BorderScanner algorithm for extracting object contours,  

 
Figure 4.   Object delimiters extraction by exploring Policy Trees. a) An 

image from the traffic scene. b) A Policy Tree constructed at a lower 

resolution. For a better visibility each tree branch has a diferent color. c) A 

Policy Tree covering the entire grid space. Each grid cell is assigned to a tree 

node. d) The result of exploring the occupancy grid via traversing the tree 

structure. Black values denote occupied cells. The occupancy grid corresponds 

to the traffic scene (a). 

also referred to as “object delimiters”. The main idea of the 

algorithm is to extract a contour },...,{ 1 NCm ccC =  for each 

object by accumulating the most visible grid cells 
ic  that are 

occupied. This is achieved by generating a virtual ray which 

extends from the ego-vehicle position and traverses the 

occupancy grid in a radial direction with fixed increments. 

At each step, the closest occupied point along the virtual ray 

is accumulated into the contour list Cm. The first 

observation is that in order to cover the entire space it is 

necessary to scan the grid surface at a high resolution. 

Moreover, the scanning axes and the position of the 

candidate object cells along these axes are re-computed at 

each frame. The second observation is that, at high 

scanning resolutions, the occupancy gird cells that are close 

to the origin position are likely to be traversed more than 

once. To minimize the algorithm complexity and to solve 

the overlapping sub-problems we introduced a Policy Tree, 

which is regarded as a predefined path structure that is used 

to explore the occupancy grid space. The object delimiter 

extraction algorithm is described by the two main phases: 

1) Policy Tree Creation: The idea of creating path 

search data structures is widely used in the context of 

navigation or path planning applications [18][19]. In our 

case we construct a specific tree-based structure T that 

stores all possible paths starting from the point of origin 

(the camera position). A node si in the tree T can be 

described as a policy s(ci) that determines the search 

position of the next grid cell cj given the position of the 

current cell ci: 

 ]..1[],..1[),( NGjNGicsc ij ∈∈=  (1) 

 

 

ALGORITHM I 

CREATING THE POLICY TREE  

1: s0 ← initial node as a starting position 

2: foreach virtual ray α  

3:     sgoal ← the farthest point along the ray α  

4:     sc ←  s0 

5:     while (sc ≠  sgoal): 

6:         //Bresenham Algorithm[20] 

7:         sc ←  getNextCellAlongTheRay(α ) 

8:         if (exists another ray 
1α  containing sc)  

9:             //keep a single copy of sc 

10:           move sc node from
1α to α  

11:       else  

12:           add(sc)  

 



  

where NG represents the grid size. Therefore, every node si 

in the tree is associated to a grid cell ci and also contains a 

reference to the next node. The root of the tree s0 stores the 

position of the observation point, while the tree leafs 

correspond to the grid boundary cells. The grid points that 

are processed more than once maintain a single copy in the 

tree (see Fig. 3). As the search space has the same size and 

the same resolution in all frames, the Policy Map is 

constructed only once, in the initialization step (Algorithm 

I). The generated structure can also be stored as a map of 

linked lists, each list denoting a tree branch. 

2) Exploration: The exploration step is performed at 

each frame by using the generated Policy Tree. The purpose 

of this step is to find all closest object points that are 

occupied (see Fig. 4).  In order to accumulate the cells of 

interest we use a depth-first search strategy starting from 

the root of the tree and traversing as far as possible along 

each branch until an occupied cell is discovered. All the 

object points that are found are accumulated into a contour 

list: 
},...,{ 1 NCm ccC =

. 

B.  Grid Block Entities 

Each accumulated cell in the contour list 
mC  is used as 

a seed point for constructing a so called “grid block”. The 

idea is to compute a set of independent medium level 

entities incorporating the information about the object 

position, color and geometry (see Fig. 5). For each selected 

contour point we define a window of NxN cells, centered in 

the point’s position. Then we use the defined window to 

extract a vector of NxN occupancy values from the 

occupancy grid and a vector of NxN grayscale values from 

the intensity grid. Therefore, a grid block model is 

described by the following parameters: 

 
Figure 5.   Grid Block model. Left: the Occupancy Grid with the extracted 

delimiters. Middle: The Intensity Grid. Right: the three components defining 

the estimated state: position, occupancies and grayscale values. 

• The dynamic component T

zx vvzxS ],,,[=  being 

described by the position ),( zxPc
 and speed parameters 

),( zx vvV
r

. The block position is given by the position of 

its center point ),( zxPc
 in the car coordinate system. 

• The geometry component, which is described by a set of 

occupancy values },...,,{ 21 KoooO = , where K represents 

the number of neighbor cells included in a NxN window. 

• The intensity component specifying a vector of grayscale 

intensity values },...,,{ 21 KgggG = . Both sets G and O  

have the same size NNK ⋅= . 

Therefore, we can describe the appearance part of each 

block as a collection of cells ]}..1[|),({ Kigob iii = , where 

each cell is defined by a pair of occupancy oi and grayscale 

gi terms. Considering the parameters described above, at 

time t the overall grid block state is defined as: 

 T

KKzxt gggooovvzxX ],...,,,,...,,,,,,[ 2121=  (2) 

and can be written in a more compact form as: 

 T

t GOSX ],,[=  (3) 

IV. GRID BLOCK TRACKING 

The purpose of the tracking mechanism is to estimate 

the optimal state 
tX  of each individual block entity. The 

problem can be formulated as a Bayes filter, which aim to 

recursively update the posterior probability distribution 

)...,|( 21 tt ZZZXp  given all noisy measurements 

}...,,{ 21:1 tt ZZZZ =  up to the present time t. Typically, 

particle-based filtering techniques [21] are used as an 

effective means to work with multi-modal distributions.  

However, a disadvantage in the case of particle filtering 

algorithms is that they are not suitable for high-dimensional 

state spaces, where the complexity tends to grow 

exponentially with the number of state parameters. To keep 

a low computational complexity we adopt a Rao-

Blackellized Particle Filter [22]. Therefore, we apply the 

“Rao-Blackwellization” process to estimate a part of the 

object state analytically by factorizing the posterior 

distribution )|( :1 tt ZXp as follows: 

 ),|,()|()|( :1:1:1 tttttttt ZSGOpZSpZXp =  (4) 

The first term )|( :1 tt ZSp describes the grid block position 

and speed posterior probability and is approximated by a set 
of weighted particles: 

 ]}..1[,,{)|( :1 NiwSZSp i

t

i

ttt =≈  (5) 

Each particle i

tS  represents a hypothesis for the position 

and velocity of a given block entity. 

The second factor ),|,( :1 tttt ZSGOp describes the block 

appearance posterior probability conditioned on its 

motion
t

S . We consider that the occupancy
tO and 

intensity
tG components are conditionally independent given 

t
S and

tZ :1
: 

 ),|(),|(),|,( :1:1:1 tttttttttt ZSGpZSOpZSGOp =  (6) 

The occupancy term ),|( :1 ttt ZSOp  is recursively 

updated using a binary Bayes filter for each individual block 

cell. The intensity factor ),|( :1 ttt ZSGp  is estimated with 

 



  

1D Kalman Filters (one per block cell). The sample state 
can be defined now as: 

 ]}..1[,],,,[|{ NiGOwSqq
Ti

t

i

t

i

t

i

t

i

t

i

t ==  (7) 

Next, we will describe the main steps of the proposed 
tracking solution. 

A. Initialization 

The initialization step generates an initial prior 

probability )( 0Xp  for each newly detected target. This is 

achieved by drawing a set of random hypotheses around 
each unassociated block measurement:  

 ]}..1[,],,,[|{)( 0000000 NiGOwSqqXp
Tiiiiii

==≈  (8) 

The object occupancy i
O0

 and intensity iG0
components 

are initialized with the corresponding observation values.  

B. State Prediction 

The aim of this step is to predict the current state 
tX  

given the previous information
1−tX and the motion model 

)|( 1−tt XXp . Each particle is moved based on its state 

transition probability. Additionally, each hypothesis state is 
altered according to a random noise. Before applying the 
prediction step we must also consider the ego-car motion 
information. As the ego-vehicle parameters are provided 
through the CAN bus, we use this information to modify the 
position of each particle. The position and 

speed T

tztxttt vvzxS ],,,[ ,,= of each hypothesis is predicted 

given its previous state 
1−tS  according to the same linear 

motion model previously described in [15]: 

C. Measurement Update 

The purpose of the measurement update step is to assign 
importance weights to the predicted particles according to 
how well these hypotheses match the measurement data. 

 )|( i

ttt qXZp =  (9) 

Additionally, each particle’s occupancy and intensity 
parameters are updated analytically. The occupancy values 
are estimated by using binary Bayes filters while the gray 
intensities are updated by means of Kalman filters. For our 
tracking solution we assume that the measurement data is 
given as a list of blocks extracted from the two grid-based 
representations (occupancy grid and intensity grid). (see 
Fig. 6). For each block, the measurement vector is defined 
by three main components: 

 Tg

t

o

t

p

tt ZZZZ ],,[=  (10) 

where p

tZ  describes the measurement grid block positions, 

o

tZ  denotes the observed occupancy values and g

tZ  

represent the measured intensity component. We can 
express the measurement model as: 

 
Figure 6.   From the raw measurements to the grid blocks. a) Left camera 

image b) The Intensity Grid c) The detected block entities with assigned gray 

values extracted from the Intensity Grid (b). d) The raw occupancy values. 

Black means occupied. e) The computed occupancy probabilities according to 

the used Forward Probability Model. White colors indicate occupied cells. f) 

The same block entities as in (c) represented by occupancies from (e). Even the 

extracted measurement block entities in (c) and (f) are visually grouped into 

continuous object delimiters, they are tracked individually. 

 )|,,()|( t

g

t

o

t

p

ttt XZZZpXZp =  (11) 

By assuming that all measurement components are 
independent we obtain: 

 )|()|()|()|( t

g

tt

o

tt

p

ttt XZpXZpXZpXZp =  (12) 

Therefore, we estimate the particle weights by 
considering the three terms provided by the equation (12).   

1) Computing the Stereovision Uncertainties 

In order to take into account the noises provided by the 
stereovision system, the uncertainty model should be 
defined. By using an error model similar to one described in 

[23], we approximate the longitudinal error 
zσ and the 

lateral 
xσ error as: 

 
z

x

fb

z z
x

d
z

⋅
=

⋅

⋅
=

σ
σ

σ
σ ,

2

 (13) 

where b is the distance between the two cameras (baseline), 
f is the focal distance , x and z are the coordinates of a point 

in 3D and 
dσ  represents the disparity error in pixels. The 

error standard deviations are estimated for all grid cells and 
are stored into a look-up table. 

2) Defining the Inverse Sensor Model 

In order to update the occupancy probability of each 

block cell )( kop we require an inverse sensor model 

)|( S

txz Zcp , where 
xzc is a new occupancy probability 

stored at the position (x,z) in the grid and S

tZ represents the 

stereo measurements. As the raw observations (see Fig. 6.d) 

 



  

are affected by the stereo uncertainties we consider that 

each grid cell is described by a probability distribution with 

the standard deviations defined in the previous step. We are 

interested to determine the occupancy value of a certain cell 

xzc  given also the probabilities of its neighbor 

measurements. As in the Kernel Density Estimation 

approaches that use Parzen windows [24] we estimate the 

occupancy of a cell 
xzc  by placing a window of size 

xσ2 x
zσ2 at the position of 

xzc  and then, determine, for all 

occupied neighbor cells that fall within the window, what is 

the contribution of each observation 
ijc  to the cell 

xzc . The 

occupancy values 
xzc  are approximated as (see Fig.6.e): 
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where ϖ  is the sum of all 
jiσπσ2/1  values computed for 

each neighbor cell
ijc .  

3) Particle Weighting 

Having the measurement information given as a list of 

extracted blocks },...,,{ ,2,1, Ntttt ZZZZ = , for each particle 

i

tq  its weight iw is determined as follows: 

a) Position weights: for the position component we 
compute a distance between the particle and the closest 

corresponding measurement block
ktZ ,

: 

 ),(min),( ,
}..1{

mt

i

t
Nm

t

i

t ZqdZqd
∈

=  (15) 

The distance to the closest measurement ),( t

i

t Zqd  can 

be decomposed into two x and z components (dx, dz) where 
22),( dzdxZqd t

i

t += . It must be noted that, the particle-

to-measurement associations are determined by using a pre-
computed distance transform map where each cell in the 
map stores the information regarding the closest 
measurement block. Therefore, for each hypothesis, the 
corresponding measurement is found in O(1) by 
superimposing the particle model on the distance map. The 

weight received by the particle position i

pw  is estimated by 

converting the distance metric according to: 

 






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
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===
2
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1

2

1
)|( zx
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zx

i

t

g

t

i

p eqXZpw
σσ

σπσ
 (16) 

b) Occupancy weights: for the occupancy component we 

define a dissimilarity metric ),( ,

o

mt

i

t Zqd  by calculating the 

normalized sum of absolute differences between 

corresponding occupancy elements in the particle i

ko  and 

the measurement cells m

ko .  

 KopopZqd m

k

i

k

o

mt

i

t /)()(),( , −=  (17) 

where i is the particle index, m represents the measurement 

block index, )( kop  denotes the occupancy probability of a 

cell 
ko , k is the index of the occupancy element ]..1[ Kk ∈ , 

and K represents the total number of occupancy values in a 
given particle or measurement block. The resulted heuristic 
metric is used to estimate the occupancy weight: 
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σπσ
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c) Intensity weights: the same strategy is applied for the 
particle gray values. The difference here is that we are 
taking into account only the intensity of occupied cells 
(belonging to obstacles). The gray dissimilarity measure is 
defined as: 

 )/(),( , occg

m

k

i

k

g

mt

i

t NNggZqd ⋅−=  (19) 

where Ng represents the number of possible gray intensities 
and Nocc is the number of cells that are occupied in both 
particle and measurement block. The intensity weight is 
computed according to: 
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As described in the equation (12), the overall particle 

weight 
iw is determined as: 

 i

g

i

o

i

p

i
wwww ⋅⋅=  (21) 

4) Updating the Occupancy Component 

This step updates the occupancy component 

},...,,{ 21

i

K

iii

t oooO =  for each hypothesis i

tq . The update 

method relies on the inverse sensor model )|( S

txz Zcp  

previously described in the step 2.  The computed values are 
assigned to the extracted block measurements so that: 

 )|()|( S

txz

S

t

m

k ZcpZop =  (22) 

where k is the index of the occupancy element ]..1[ Kk ∈ , m 

represents the index of the measurement block, and cxz is 
the corresponding grid cell. Assuming that the occupancy of 
individual cells is independent we can decompose the 
update problem into many binary estimation subproblems. 
The new measurements can be recursively incorporated for 
each individual cell by using a binary Bayes filter. As 
described in [17], this can be expressed in the log-odds 
representation as: 
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where i

ktl ,
represents the log-odds ratio defined according to: 
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The term i

ktl ,1−
 denotes the previous log-odds value. The 

second term in the equation (23) describes the inverse 
sensor model while de last term represents the prior log-
odds ratio. The new occupancy probability of a given 

element i

ko  in the particle i

tq can be estimated according to: 

 ))1(1()|( 1

:1
, −

+−=
i

ktlS

t

i

k eZop  (25) 

.5) Updating the Particle’s Intensity Values 

This step updates the particle grayscale component 
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grayscale element we use a 1D Kalman filter to estimate its 

new mean and variance ),ˆ( g
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The two variances are tuned experimentally. 

D. State Estimation 

As the result of measurement update step we have 
determined the new weights of the particle population and 
estimated the belief of each particle about its occupancy and 
grayscale intensity. The current posterior density can be 
estimated now as: 
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E. Resampling and Merging 

The resampling stage consists in drawing from the 

previous sample distribution according to a probability 

proportional to the particle weights. As the result, the 

particles with high weights are multiplied by replacing the 

particles with low weights. Also, at this stage we decide 

whether the similar trackers should be merged. For merging 

the particle distributions we use a separate map to 

accumulate all overlapping candidates. When a new block 

state is estimated, its position is registered into the 

overlapping map. In the resampling step, we test if in the 

same estimated grid position there is another tracklet. The 

candidates having the similar speed vectors are subjected to 

the merging process. As all tracklets share the same 

measurement space we use all particles of the selected 

candidates to estimate the new state. The new population of 

particles will be drawn by sampling from all candidate 

distributions.  

V. EXPERIMENTAL RESULTS 

The proposed method has been tested on various traffic 

scenarios in Cluj-Napoca, Romania. For our tests we have 

used a 2.66GHz Intel Core 2 Duo Computer with 2GB of 

RAM. Both input grids (occupancy and intensity grid) have 

the same size of 240 rows x500 columns (0.1 m x 0.1 m  

 
Figure 7.   Modeling and Tracking results. a) An image from the traffic 

scene. b) The corresponding population of particles projected into the grid 

space (top view). Each particle is represented as a point. High intensities 

indicate high weights. c) The estimated grid blocks described by their 

occupancy values and the assigned speed vectors. d) The result projected in the 

image space. Each red segment corresponds to an extracted measurement and 

has the same height as the associated object. e) A traffic scenario including a 

partially visible car. 

cells). Some qualitative results including intermediate 

processing steps are presented in the Fig. 7. Fig. 7.b shows 

how the entire population of particles is projected in the 

grid space (top view). Each particle is represented as a 

point. The particles are weighted based on how well they 

match the new observations. High intensities indicate high 

weights. Fig. 7.c illustrates the estimated grid blocks and 

the assigned speed vectors. Fig. 7.d shows how the resulted 

dynamic environment representation is projected in the 

image space. Each red segment corresponds to an extracted 

measurement and has the same height as the associated 

object. Another traffic scenario including partial visible 

obstacles is shown in Fig. 7.e. We have compared the 

performance of the proposed Policy Tree based delimiter 

extraction solution with a previously developed 

BorderScanner method [16] in terms of the execution time. 

Besides the space size, the Border Scanner approach 

complexity depends also on the radial step size. For 

example, with a radial step of 0.01 radians the average 

processing time is about 5ms, however when covering the 

entire 240x500 grid space, the running time increases at 

22.8 ms.  In comparison with the BorderScanner method, 

the Policy Tree based approach reduces the delimiter 

extraction time to 3.63ms / frame. Fig. 8 presents a 

comparison between the proposed tracking solution (RBPF- 

 

TABLE I 

SPEED ESTIMATION ACCURACY 

Accuracy Metric GRID-BLOCKS ICP-KALMAN [25] 

MAE (km/h) 2.97 3.7 

 



  

 
Figure 8.   Comparison between the proposed Grid Block representation and 

tracking approach and the existing ICP-KALMAN method [25]. 

Grid-Blocks) and an existing ICP-based object tracking 

approach (ICP-KALMAN) [25]. The test implies a test 

vehicle passing from right to left, being in the field of view 

for 26 frames. The ground truth speed is provided by a high 

accuracy GNSS device, mounted on the test vehicle. The 

target car velocity was estimated as the average speed of its 

associated block entities. The mean absolute error of the 

speed estimation was 2.97 km/h for the proposed method 

and 3.7 km/h for the ICP-KALMAN solution [25]. In the 

case of urban traffic experiments, the average number of 

tracked grid blocks was 486. For each block we set a fixed 

size of 3x3 cells and a fixed number of 40 particles. The 

average processing time of the proposed tracking solution 

was about 194ms.  

VI. CONCLUSIONS 

In this paper we presented a new stereovision based 
method for modeling and tracking crowded traffic scenes. 
The method uses two grid-based representations, namely an 
intensity grid and a classified occupancy grid. In order to 
accelerate the measurement extraction process and to avoid 
the overlapping subproblems, a Policy Tree is employed. 
The measurements are given in form of rectangular grid 
blocks, comprising a dynamic part, a geometry part and an 
intensity part. The proposed medium level tracking solution 
is based on a Rao-Blackwellized particle filter able to 
process high dimensional state spaces. This allows handling 
the data association at particle level in a natural manner. 
The proposed method is also able to deal with the 
uncertainties of the stereovision system and to incorporate 
the intensity information into the estimated state. As future 
work, it would be important to extend the tracked state with 
the height information. The system processing time can also 
be improved by further optimizations. 
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