Modeling and Tracking of Crowded Traffic Scenes by using Policy
Trees, Occupancy Grid Blocks and Bayesian Filters

Andrei Vatavu, Radu Danescu and Sergiu Nedevschi, Member, IEEE, Members, IEEE

Abstract—In this paper we propose a new solution for
representing and tracking crowded traffic environments by
using dense stereo data. The proposed method relies on the
information provided by two compact 2.5D grid-based
representations: a classified occupancy grid and an intensity
grid. The measurement data is extracted using a predefined
Policy Tree, which represents a path structure used to
accelerate the object delimiter extraction. The extracted
measurements are given in form of rectangular grid blocks
that are described by three components: a dynamic, a
geometry and an intensity component. We propose a medium
level tracking approach in which the state is estimated for
each block individually. To be able to work with a high
dimensional state space a Rao-Blackwellized particle filter is
used. The proposed solution has several advantages. First, the
data association is performed at the particle level, thus being
handled in a natural way by a weighting-resampling
mechanism. Second, unlike other existing geometry-based
solutions we also incorporate the intensity information in the
tracking process. Finally, the proposed method takes into
account the uncertainties of the stereovision system.

I. INTRODUCTION

Modeling and tracking of dynamic and crowded
environments represents a difficult research task for any
driving assistance system. Usually, the surrounding world of
a moving vehicle is unknown and filled with many objects
of different shapes, types, sizes and speeds. Moreover, in
cluttered environments, such as urban traffic scenes, the
representation module may be affected by occlusions,
unpredictable behavior of the objects or introduced
measurement noises. Therefore, the expectations from an
advanced driver assistance system are high, as such a
system should be able to use the imperfect sensorial
information in order to accurately represent the driving
world and to locate and track the relevant traffic entities.

The general problem of vision-based modeling and
tracking of dynamic environments can be divided into
several main subtasks: acquiring the measurement data,
extracting a set of relevant entities by using specific
representation models and keeping track of these entities
over time. Many stereovision-based methods have been
proposed in the literature. An extensive survey of the past

Andrei Vatavu, Radu Danescu and Sergiu Nedevschi are with the
Technical University of Cluj-Napoca, Computer Science Department (e-mail:
{firstname.lastname } @cs.utcluj.ro). Department address: Computer Science
Department, Str. Memorandumului nr. 28, Cluj-Napoca, Romania. Phone:
+40 264 401484.

decade’s progress in the vision based on-road object
detection and tracking is presented in [1].

Current environment representation and tracking
approaches can be split into two main categories: intensity-
based solutions [3][10] and geometry-based solutions
[4]1[8][9]. Usually, the intensity-based methods combine the
depth information with the motion cues computed by optical
flow. For example, in [10], the scene flow is computed by
simultaneously extracting the stereo and motion
information. In [3], the primary depth data is directly used
to estimate the 3D-position and 3D-motion for every image
point. To reduce the computational complexity, many
existing approaches map the 3D information into more
compact intermediate structures. Thus, the primary 3D data
is transformed into Occupancy Grids [4-6], Stixel-based
representations [7], Elevation Maps [8] or Octree-based
data structures [9]. In [4], the authors present a geometry-
based method in which the tracking mechanism is applied
directly at the occupancy grid cell level. The occupancy,
position and speed of each cell are estimated by using a
population of particles that can migrate from cell to cell
depending on their motion parameters. An extended method
for tracking fully dynamic elevation maps is described in
[11]. In [2], the color information is incorporated into a 3D
voxel map. Obstacle candidates are extracted by using a
color-space segmentation to group together the similar
voxels. The object motion and pose are estimated by means
of linear Kalman filters.

Other modeling and tracking solutions use higher level
abstractions, aiming to track the most relevant information,
while reducing the processing cost. Most of them
approximate the object shape with simple representations
such as 2D or 3D boxes. However, in some cases, due to
the heterogeneity of the urban infrastructure, the use of
restricted models in the tracking process may lead to
inappropriate results. To overcome this problem, various
solutions for representing and tracking free-form object
representations were proposed. In particular, the authors in
[14] use the laser measurements to build a local 3D grid for
each object. A particle filter is used to estimate the object
position, speed and orientation parameters. Another similar
approach is presented in [13]. The laser information is
accumulated into local grid maps. The authors use a Rao-
Blackwellized particle filter such that the obstacle dynamic
state is estimated by sampling while its local grid map cells
are updated analytically. A stereovision-based solution for
tracking free-form objects is proposed in [12]. The object
motion and its contour information are derived from the
object local occupancy grids. In our previous work described



in [15] we present a particle filter based solution that is able
to estimate the position, the speed and the geometry of
objects from noisy stereo depth data. The static and dynamic
obstacles are represented by a set of attributed polygonal
models. The free-form representations are extracted from a
classified occupancy grid by using the previously developed
BorderScanner algorithm [16]. A Rao-Blackwellized
particle filter is used to track both the obstacle position and
its geometry.

In this paper we propose a novel solution for
representing and tracking crowded traffic environments by
using dense stereo data. The proposed method relies on the
information provided by two compact 2.5D grid-based
representations: a classified occupancy grid and an intensity
grid. The measurement data is generated by exploring the
two grids and extracting the most visible information.
Unlike the previous approaches, which generate virtual rays
at each frame and search the interest object cells along these
rays, this work uses Policy Trees to direct the search
process trough the occupancy grid space. By using a
predefined path structure we accelerate the object delimiter
extraction step and solve two main issues: the virtual ray re-
computation and the overlapping subproblems (when the
same grid cell is accessed several times in the searching
process). The extracted measurements are given in form of
rectangular grid blocks. Each surface patch is composed by
NxN cells and is described by three components: a dynamic
component, a geometry component (a vector of NxN
occupancy values) and an intensity component (a vector of
NxN grayscale values). Unlike the other object level
tracking solutions, we propose a medium level tracking
approach in which the state is estimated for each block
individually. To be able to work with high dimensional state
space a Rao-Blackwellized particle filter is used. Thus, the
position and speed of each entity is tracked by a sampling
mechanism, the geometry part is updated by using binary
Bayes filters while the intensity component is updated by
using separate 1D Kalman Filters for each block cell. The
proposed solution has several advantages. First, the data
association is performed at the particle level being handled
in a natural way by a weighting-resampling mechanism.
Second, unlike other existing geometry-based solutions we
incorporate also the color information in the tracking
process. Finally, the proposed method takes into account the
uncertainties of the stereovision system.

The paper is structured as follows: the next section
describes the overall system architecture, the grid block
extraction by using Policy Tree is presented in the section
I, section IV details the proposed tracking approach
including its main steps, while the last two sections show
the experimental results and the conclusion about this work.

II. SYSTEM OVERVIEW

The system processing flow can be decomposed into tree
main stages: Intermediate Representation, Measurement
Extraction and Tracking (see Fig.1).

Dense Stereo

(position, occupancies and grayscale values)

" NxN Grid Blocks |
.
.
.

Information
E 2.5D Intermediate| Representation E
' A .
(] .
' . . Classified '
H s
' Intensity Grid Occupancy Grid '
.
T S |
:'Measurement Extraction E
H Initialization v H
’ . .
' . Extracting the '
Policy Tree ) '
E Y Contour Points '
: H
’ .
(] .
. .
)
v
]
’
'
7

Tracking:Rao-Blackwellised Particle Filter

1

. .

Position and Speed Occupancy Intensit '

. .

Pa‘mcle Binary Bayes Kalman H

Filter Filters Filters H

~iimsizescceeescceseecoees 3 ..................... :

.

Individual Tracklets E

.

Next Frame | E
Figure 1.  System Overview.

The Intermediate Representation module consists in
mapping the 3D dense information into two 2.5D grid-
based representations: Occupancy Grid and Intensity Grid.
Both maps have the same size and resolution and can be
regarded as a projection of the 3D data into a more compact
bird-eye view space. The raw occupancy grid cells are
computed by processing a stereovision-based elevation map
(see Fig. 2) in which each cell stores the information of its
height and type (road, object or traffic isle) [8]. In the case
of the Intensity Grid, the cell values are estimated as the
average intensity of its associated 3D points.

The Measurement Extraction module uses the two grid
maps to extract a set of rectangular NxN blocks. In the
initialization step we pre-compute a Policy Tree. The Policy
Tree is used to store all possible paths between the ego-
vehicle’s position and the most visible object points,
through the grid. The block entities are extracted by
exploring the Policy Tree with a depth-first-search
technique.

Figure 2. Intermediate Representations. a) An image from the traffic scene.
b) The grayscale intensity grid c¢) The classified occupancy grid. The grid cells
are labeled as Object (red), Road (blue) and Traffic Isle (yellow).



Figure 3.  Generating the Policy Tree. Top: a simple scenario containing
only three rays. The grid points that are processed more than once by deiferent
rays maintain a single copy in the tree. The cell colors show how they are
assigned to the tree branches. Bottom: the resulted structure.

In the Tracking stage we estimate the optimal state
parameters for each individual grid block using a Rao-
Blackwellized Particle Filter. The position and speed
parameters are estimated by a weighting-resampling
mechanism, the occupancy values are updated by using
binary Bayes filters while the intensity values are updated
by using individual Kalman Filters for each block cell. The
representation and tracking modules will be described in
detail in the next sections.

III. EXTRACTING GRID BLOCKS BY USING POLICY TREES

The purpose of this stage is to extract a set of the most
visible (not occluded) rectangular patches — grid blocks.
Each block can be regarded as a 2D surface patch that is
centered into an object contour point, and includes the
information about the object position, occupancy and
intensity component. The extracted blocks are used as the
measurement information for the subsequent tracking
algorithm. Thus, instead of performing the data association
and filtering at the object level we split the object model
into smaller entities, each entity being tracked separately.

ALGORITHM I
CREATING THE POLICY TREE

1: sp <—initial node as a starting position
2: foreach virtual ray &
3:  Sgoa € the farthest point along the ray &
Sc < Sp
while (s, # Sgoq):
//Bresenham Algorithm[20]
s < getNextCellAlongTheRay( & )

if (exists another ray o' containing s)
//keep a single copy of s,

O NJou s

10: move s. node from a'to a
11: else
12: add(s.)

A. Extracting Object Contours by using Policy Trees

In our previous work [16] we introduced the
BorderScanner algorithm for extracting object contours,

Figure 4. Object delimiters extraction by exploring Policy Trees. a) An
image from the traffic scene. b) A Policy Tree constructed at a lower
resolution. For a better visibility each tree branch has a diferent color. ¢) A
Policy Tree covering the entire grid space. Each grid cell is assigned to a tree
node. d) The result of exploring the occupancy grid via traversing the tree
structure. Black values denote occupied cells. The occupancy grid corresponds
to the traffic scene (a).

also referred to as “object delimiters”. The main idea of the
algorithm is to extract a contour C, ={c,,...,cy.} for each

object by accumulating the most visible grid cells ¢, that are

occupied. This is achieved by generating a virtual ray which
extends from the ego-vehicle position and traverses the
occupancy grid in a radial direction with fixed increments.
At each step, the closest occupied point along the virtual ray
is accumulated into the contour list C,. The first
observation is that in order to cover the entire space it is
necessary to scan the grid surface at a high resolution.
Moreover, the scanning axes and the position of the
candidate object cells along these axes are re-computed at
each frame. The second observation is that, at high
scanning resolutions, the occupancy gird cells that are close
to the origin position are likely to be traversed more than
once. To minimize the algorithm complexity and to solve
the overlapping sub-problems we introduced a Policy Tree,
which is regarded as a predefined path structure that is used
to explore the occupancy grid space. The object delimiter
extraction algorithm is described by the two main phases:

1) Policy Tree Creation: The idea of creating path
search data structures is widely used in the context of
navigation or path planning applications [18][19]. In our
case we construct a specific tree-based structure 7' that
stores all possible paths starting from the point of origin
(the camera position). A node s; in the tree T can be
described as a policy s(c;) that determines the search
position of the next grid cell ¢; given the position of the
current cell ¢;:

c; =s(c;),i€[1.NG], j€ [1.NG] 1)



where NG represents the grid size. Therefore, every node s;
in the tree is associated to a grid cell ¢; and also contains a
reference to the next node. The root of the tree s, stores the
position of the observation point, while the tree leafs
correspond to the grid boundary cells. The grid points that
are processed more than once maintain a single copy in the
tree (see Fig. 3). As the search space has the same size and
the same resolution in all frames, the Policy Map is
constructed only once, in the initialization step (Algorithm
I). The generated structure can also be stored as a map of
linked lists, each list denoting a tree branch.

2) Exploration: The exploration step is performed at
each frame by using the generated Policy Tree. The purpose
of this step is to find all closest object points that are
occupied (see Fig. 4). In order to accumulate the cells of
interest we use a depth-first search strategy starting from
the root of the tree and traversing as far as possible along
each branch until an occupied cell is discovered. All the
object points that are found are accumulated into a contour

list: C, = {cl,...,cNC}.

B. Grid Block Entities
Each accumulated cell in the contour list C, is used as

a seed point for constructing a so called “grid block™. The
idea is to compute a set of independent medium level
entities incorporating the information about the object
position, color and geometry (see Fig. 5). For each selected
contour point we define a window of NxN cells, centered in
the point’s position. Then we use the defined window to
extract a vector of NXN occupancy values from the
occupancy grid and a vector of NxN grayscale values from
the intensity grid. Therefore, a grid block model is
described by the following parameters:

Yy & Al
' - Occupancy
Values
* P

&

I Grayscale
Intensity Values
y

Figure 5.  Grid Block model. Left: the Occupancy Grid with the extracted
delimiters. Middle: The Intensity Grid. Right: the three components defining
the estimated state: position, occupancies and grayscale values.

e The dynamic component S=[x,z,vx,vz]7 being

described by the position P (x,z) and speed parameters
V(VX’VZ ). The block position is given by the position of

its center point P, (x,z) in the car coordinate system.

e The geometry component, which is described by a set of
occupancy values O ={o,,0,,...,0, } , where K represents

the number of neighbor cells included in a NxN window.

e The intensity component specifying a vector of grayscale
intensity values G ={g,,g,,....&, |- Both sets Gand O

have the same size K =N-N .

Therefore, we can describe the appearance part of each
block as a collection of cells {b,(o,,g,)!i=[1..K]}, where

each cell is defined by a pair of occupancy o; and grayscale
g: terms. Considering the parameters described above, at
time ¢ the overall grid block state is defined as:

T
X, =[X,2,V,,V,,0,,0,,...,0¢, 81,8558k ] (2)
and can be written in a more compact form as:

X, =[5,0,GY" 3)

IV. GRID BLOCK TRACKING

The purpose of the tracking mechanism is to estimate
the optimal state X, of each individual block entity. The
problem can be formulated as a Bayes filter, which aim to
recursively update the posterior probability distribution
p(X,1Z,Z,.Z) given all noisy measurements

Z,={Z,,Z,...,Z,} up to the present time z. Typically,

particle-based filtering techniques [21] are used as an
effective means to work with multi-modal distributions.
However, a disadvantage in the case of particle filtering
algorithms is that they are not suitable for high-dimensional
state spaces, where the complexity tends to grow
exponentially with the number of state parameters. To keep
a low computational complexity we adopt a Rao-
Blackellized Particle Filter [22]. Therefore, we apply the
“Rao-Blackwellization” process to estimate a part of the
object state analytically by factorizing the posterior
distribution p(X, 1 Z, ) as follows:

p(XtIZl:t):p(StIZl:t)p(Ot’GtISt’Zl:t) (4)

The first term p(S, | Z,,) describes the grid block position
and speed posterior probability and is approximated by a set
of weighted particles:

p(S,1Z,)={S,,w,,i=[1.N1} ®)

Each particle S ; represents a hypothesis for the position
and velocity of a given block entity.

The second factor p(0,,G, |S,,Z,,)describes the block

appearance posterior
motion §,. We consider

intensity G, components are conditionally independent given
St and Zl:t :

probability conditioned on its
that the occupancyQ,and

p(ot’Gt ISt’Zl:t): p(ot ISt’Zl:t)p(Gt ISt’Zl:t) (6)

The occupancy term p(O,1S,,Z,,) is recursively

updated using a binary Bayes filter for each individual block
cell. The intensity factor p(G,1S,,Z,,) is estimated with



1D Kalman Filters (one per block cell). The sample state
can be defined now as:

{q/1q, =[S} .w!,0/,G/1",i=[1.N]} ™

Next, we will describe the main steps of the proposed
tracking solution.

A. Initialization

The initialization step generates an initial prior
probability p(X,) for each newly detected target. This is

achieved by drawing a set of random hypotheses around
each unassociated block measurement:

p(Xy) ={qo1 gy =[S, 5,05, Gyl i =[1.N]}  (8)

The object occupancy O and intensity G components
are initialized with the corresponding observation values.

B. State Prediction

The aim of this step is to predict the current state X,
given the previous information X,  and the motion model
p(X,1X, ). Each particle is moved based on its state

transition probability. Additionally, each hypothesis state is
altered according to a random noise. Before applying the
prediction step we must also consider the ego-car motion
information. As the ego-vehicle parameters are provided
through the CAN bus, we use this information to modify the
position of each particle. The position and
speedSt =[wawa,sz,t]T of each hypothesis is predicted

given its previous state § , according to the same linear
motion model previously described in [15]:

C. Measurement Update

The purpose of the measurement update step is to assign
importance weights to the predicted particles according to
how well these hypotheses match the measurement data.

P(Z,1X, =q,)) )

Additionally, each particle’s occupancy and intensity
parameters are updated analytically. The occupancy values
are estimated by using binary Bayes filters while the gray
intensities are updated by means of Kalman filters. For our
tracking solution we assume that the measurement data is
given as a list of blocks extracted from the two grid-based
representations (occupancy grid and intensity grid). (see
Fig. 6). For each block, the measurement vector is defined
by three main components:

Z =[zr,z°,Z251" (10)

where Z? describes the measurement grid block positions,
7’ denotes the observed occupancy values and Zf

represent the measured intensity component. We can
express the measurement model as:

Figure 6. From the raw measurements to the grid blocks. a) Left camera
image b) The Intensity Grid c) The detected block entities with assigned gray
values extracted from the Intensity Grid (b). d) The raw occupancy values.
Black means occupied. €) The computed occupancy probabilities according to
the used Forward Probability Model. White colors indicate occupied cells. f)
The same block entities as in (c) represented by occupancies from (e). Even the
extracted measurement block entities in (c) and (f) are visually grouped into
continuous object delimiters, they are tracked individually.

1n

By assuming that all measurement components are
independent we obtain:

p(Z X)) =pZ 1 X)p(Z7 1 X )p(ZF1X,)

pZ N X)=pZ},Z',ZF1X,)

(12)

Therefore, we estimate the particle weights by
considering the three terms provided by the equation (12).

1) Computing the Stereovision Uncertainties

In order to take into account the noises provided by the
stereovision system, the uncertainty model should be
defined. By using an error model similar to one described in

[23], we approximate the longitudinal error ¢ and the
lateral O ErTor as:

-0, o.-x

O B = ’O' . = =

b-f z
where b is the distance between the two cameras (baseline),
f1s the focal distance , x and z are the coordinates of a point

in 3D and o, represents the disparity error in pixels. The

(13)

error standard deviations are estimated for all grid cells and
are stored into a look-up table.

2) Defining the Inverse Sensor Model

In order to update the occupancy probability of each
block cell p(o,)we require an inverse sensor model

p(c..1Z°), where ¢_is a new occupancy probability
stored at the position (x,z) in the grid and Z f represents the

stereo measurements. As the raw observations (see Fig. 6.d)



are affected by the stereo uncertainties we consider that
each grid cell is described by a probability distribution with
the standard deviations defined in the previous step. We are
interested to determine the occupancy value of a certain cell
c,, given also the probabilities of its neighbor

measurements. As in the Kernel Density Estimation
approaches that use Parzen windows [24] we estimate the
occupancy of a cell ¢ _ by placing a window of size

20 x 20, at the position of ¢ and then, determine, for all

occupied neighbor cells that fall within the window, what is
the contribution of each observation c; to the cell ¢ . The

occupancy values ¢ are approximated as (see Fig.6.e):

=), @=?

o o } (14)

=740, j=x+0, l{

DI M

IZ,S)——
D5 i, 270, 0

ple,,

where @ 1is the sum of all 1 /271-0-1.0-]. values computed for

each neighbor cell c;i-

3) Particle Weighting

Having the measurement information given as a list of
extracted blocks Z ={Z Z, y}, for each particle

t,1° t2""’

q! its weight w'is determined as follows:

a) Position weights: for the position component we
compute a distance between the particle and the closest
corresponding measurement block Z , :

d(q;’Zt): n(llil}v)d(qt’ tm) (15)

The distance to the closest measurement d(q!,Z,) can
be decomposed into two x and z components (dx, dz) where

d(q!,Z,)=~dx* +dz" . It must be noted that, the particle-

to-measurement associations are determined by using a pre-
computed distance transform map where each cell in the
map stores the information regarding the closest
measurement block. Therefore, for each hypothesis, the
corresponding measurement is found in O(/) by
superimposing the particle model on the distance map. The
weight received by the particle position w; is estimated by

converting the distance metric according to:
1| dx® dZ

;e’z{af*é} (16)
270 .0,

Wj: =p(Z[g |Xt =qi)=

b) Occupancy weights: for the occupancy component we
define a dissimilarity metric d(qt,Z" ) by calculating the

t.m
normalized sum of absolute differences between
corresponding occupancy elements in the particle o,i and

the measurement cells o

a7

d(qt’ tm) p(Oll()_p(Ol’(n)/K

where i is the particle index, m represents the measurement
block index, p(o,) denotes the occupancy probability of a

cell o, k is the index of the occupancy element k € [1..K],

and K represents the total number of occupancy values in a
given particle or measurement block. The resulted heuristic
metric is used to estimate the occupancy weight:

ld (q[’ tm) (18)
2 o’

o

. . 1
w,=pZ' 1 X,=q") =exp{
270,

c) Intensity weights: the same strategy is applied for the
particle gray values. The difference here is that we are
taking into account only the intensity of occupied cells
(belonging to obstacles). The gray dissimilarity measure is
defined as:

19)

d(qt ’Zt m)

occ

where N, represents the number of possible gray intensities
and N, is the number of cells that are occupied in both
particle and measurement block. The intensity weight is
computed according to:

: : 1 1d°(q,.Z5,)
"=p(Z81X,=q")= e —— AetemZ | (20)
We =PZIX =q) 2710 XI{ 2 2 }

8 0-8

As described in the equation (12), the overall particle

weight w' is determined as:
wh=ww W (21)
4) Updating the Occupancy Component

This step
0, ={0,,0;,...,

method relies on the inverse sensor model p(c

updates the occupancy
ot} for each hypothesis g .

component
The update

1Z})
previously described in the step 2. The computed values are
assigned to the extracted block measurements so that:

1Z) = p(c,.

where £ is the index of the occupancy element ke [1..K], m

po; 1Z}) (22

represents the index of the measurement block, and c,; is
the corresponding grid cell. Assuming that the occupancy of
individual cells is independent we can decompose the
update problem into many binary estimation subproblems.
The new measurements can be recursively incorporated for
each individual cell by using a binary Bayes filter. As
described in [17], this can be expressed in the log-odds
representation as:

p!1Z})
plo/1Z})

where | t’ . represents the log-odds ratio defined according to:

1-p(o")
po])

I, =1, +log (23)

t—=Lk
1-

P, 1Z;)

Y Nt el T 24)
1-p(o, | Zli)

i
lt.k -



The term [,

denotes the previous log-odds value. The
second term in the equation (23) describes the inverse
sensor model while de last term represents the prior log-
odds ratio. The new occupancy probability of a given
element o in the particle qf can be estimated according to:

Pl 1Z5)=(-(1+e")™) (25)

.5) Updating the Particle’s Intensity Values

This step updates the particle grayscale component
Gf ={ &i .8 ;',,,,, g j{} with the new measurements. For each

grayscale element we use a 1D Kalman filter to estimate its
new mean and variance ( gi,ag). The new measurements

(g,',0,,) are incorporated according to:

2 i 2 _m
A,’_O-mgk+o-ggk 2 _ 1 1
8 = 2 P T
o, +0, o, O
The two variances are tuned experimentally.

D. State Estimation

As the result of measurement update step we have
determined the new weights of the particle population and
estimated the belief of each particle about its occupancy and
grayscale intensity. The current posterior density can be
estimated now as:

N
X=3wx! 27)
i=1

E. Resampling and Merging

The resampling stage consists in drawing from the
previous sample distribution according to a probability
proportional to the particle weights. As the result, the
particles with high weights are multiplied by replacing the
particles with low weights. Also, at this stage we decide
whether the similar trackers should be merged. For merging
the particle distributions we use a separate map to
accumulate all overlapping candidates. When a new block
state is estimated, its position is registered into the
overlapping map. In the resampling step, we test if in the
same estimated grid position there is another tracklet. The
candidates having the similar speed vectors are subjected to
the merging process. As all tracklets share the same
measurement space we use all particles of the selected
candidates to estimate the new state. The new population of
particles will be drawn by sampling from all candidate
distributions.

V. EXPERIMENTAL RESULTS

The proposed method has been tested on various traffic
scenarios in Cluj-Napoca, Romania. For our tests we have
used a 2.66GHz Intel Core 2 Duo Computer with 2GB of
RAM. Both input grids (occupancy and intensity grid) have
the same size of 240 rows x500 columns (0.1 m x 0.1 m

Figure 7.  Modeling and Tracking results. a) An image from the traffic
scene. b) The corresponding population of particles projected into the grid
space (top view). Each particle is represented as a point. High intensities
indicate high weights. ¢) The estimated grid blocks described by their
occupancy values and the assigned speed vectors. d) The result projected in the
image space. Each red segment corresponds to an extracted measurement and
has the same height as the associated object. e) A traffic scenario including a
partially visible car.

TABLE I
SPEED ESTIMATION ACCURACY
Accuracy Metric GRID-BLOCKS ICP-KALMAN [25]
MAE (km/h) 297 3.7

cells). Some qualitative results including intermediate
processing steps are presented in the Fig. 7. Fig. 7.b shows
how the entire population of particles is projected in the
grid space (top view). Each particle is represented as a
point. The particles are weighted based on how well they
match the new observations. High intensities indicate high
weights. Fig. 7.c illustrates the estimated grid blocks and
the assigned speed vectors. Fig. 7.d shows how the resulted
dynamic environment representation is projected in the
image space. Each red segment corresponds to an extracted
measurement and has the same height as the associated
object. Another traffic scenario including partial visible
obstacles is shown in Fig. 7.e. We have compared the
performance of the proposed Policy Tree based delimiter
extraction solution with a previously developed
BorderScanner method [16] in terms of the execution time.
Besides the space size, the Border Scanner approach
complexity depends also on the radial step size. For
example, with a radial step of 0.01 radians the average
processing time is about 5Sms, however when covering the
entire 240x500 grid space, the running time increases at
22.8 ms. In comparison with the BorderScanner method,
the Policy Tree based approach reduces the delimiter
extraction time to 3.63ms / frame. Fig. 8 presents a
comparison between the proposed tracking solution (RBPF-



1 3 5 7

9 11 13 15 17 19 21 23 25 27 29

Figure 8. Comparison between the proposed Grid Block representation and
tracking approach and the existing ICP-KALMAN method [25].

Grid-Blocks) and an existing ICP-based object tracking
approach (ICP-KALMAN) [25]. The test implies a test
vehicle passing from right to left, being in the field of view
for 26 frames. The ground truth speed is provided by a high
accuracy GNSS device, mounted on the test vehicle. The
target car velocity was estimated as the average speed of its
associated block entities. The mean absolute error of the
speed estimation was 2.97 km/h for the proposed method
and 3.7 km/h for the ICP-KALMAN solution [25]. In the
case of urban traffic experiments, the average number of
tracked grid blocks was 486. For each block we set a fixed
size of 3x3 cells and a fixed number of 40 particles. The
average processing time of the proposed tracking solution
was about 194ms.

VI. CONCLUSIONS

In this paper we presented a new stereovision based
method for modeling and tracking crowded traffic scenes.
The method uses two grid-based representations, namely an
intensity grid and a classified occupancy grid. In order to
accelerate the measurement extraction process and to avoid
the overlapping subproblems, a Policy Tree is employed.
The measurements are given in form of rectangular grid
blocks, comprising a dynamic part, a geometry part and an
intensity part. The proposed medium level tracking solution
is based on a Rao-Blackwellized particle filter able to
process high dimensional state spaces. This allows handling
the data association at particle level in a natural manner.
The proposed method is also able to deal with the
uncertainties of the stereovision system and to incorporate
the intensity information into the estimated state. As future
work, it would be important to extend the tracked state with
the height information. The system processing time can also
be improved by further optimizations.

REFERENCES

[1] S. Sivaraman, M. M. Trivedi, "Looking at Vehicles on the Road: A
Survey of Vision-Based Vehicle Detection, Tracking, and Behavior
Analysis", IEEE Trans. on Intell. Transp. Syst., vol.14, no.4, pp.1773-
1795, Dec. 2013.

[2] A. Broggi, S. Cattani, M. Patander, M. Sabbatelli and P. Zani, "A full-
3D voxel-based dynamic obstacle detection for urban scenario using
stereo vision", in Proc. of IEEE ITSC 2013, pp.71-76, 6-9 Oct. 2013.

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion of
stereo and motion for robust environment perception,” in DAGM 05,
2005, pp. 216-223.

R. Danescu, F. Oniga, S. Nedevschi, "Modeling and Tracking the
Driving Environment With a Particle-Based Occupancy Grid," IEEE
Trans. on Intell. Transp. Syst., vol.12, no. 4, pp.1331-1342, Dec. 2011.
M. Perrollaz, J.-D. Yoder, A. Négre, A. Spalanzani, and C. Laugier, "A
visibility-based approach for occupancy grid computation in disparity
space", IEEE Transactions on Intelligent Transportation Systems, vol.
13, no. 3, pp. 1383-1393, Sep. 2012.

Thien-Nghia Nguyen, B. Michaelis, A. Al-Hamadi, M. Tornow, M.
Meinecke, "Stereo-Camera-Based Urban Environment Perception Using
Occupancy Grid and Object Tracking", in IEEE Transactions on
Intelligent Transportation Systems, vol.13, no.1, pp.154-165, 2012

D. Pfeiffer and U. Franke, "Modeling Dynamic 3D Environments by
Means of The Stixel World," IEEE Intelligent Transportation Systems
Magazine, vol.3, no.3, pp.24,36, 2011.

F. Oniga and S. Nedevschi, “Processing Dense Stereo Data Using
Elevation Maps: Road Surface, Traffic Isle, and Obstacle Detection”,
IEEE Transactions on Vehicular Technology, vol. 59, vo. 3, March
2010, pp. 1172-1182.

M.A.Garcia and A.Solanas, "3D Simultaneous Localization and
Modeling from Stereo Vision", in Proc. of IEEE ICRA, New Orleans,
USA, April-May 2004, 847-853, ISBN: 0-7803-8233-1.

S. Vedula, S. Baker, P. Rander, R. T. Collins, T. Kanade, “Three-
Dimensional Scene Flow”, IEEE Trans. Pattern Anal. Mach. Intell.
27(3): 475-480 (2005)

R. Danescu, S. Nedevschi, “A Particle-Based Solution for Modeling and
Tracking Dynamic Digital Elevation Maps”, IEEE Transactions on
Intelligent Transportation Systems, vol.15, no.3, pp.1002-1015, June
2014.

J. Aue, M.R. Schmid, T. Graf, J. Effertz, "Improved object tracking from
detailed shape estimation using object local grid maps with stereo”, in
Proc. of ITSC 2013, pp.330,335, 6-9 Oct. 2013

M. Schutz, N. Appenrodt, J. Dickmann, K. Dietmayer, "Simultaneous
tracking and shape estimation with laser scanners", in Proc. of 2013
16th International Conference on Information Fusion (FUSION),
pp-885,891, 9-12 July 2013

P. Steinemann, J. Klappstein, J. Dickmann, F. von Hundelshausen, and
H. Wunsche, "Geometric-Model-Free Tracking of Extended Targets
Using 3D-LIDAR-Measurements”, in Proc. of SPIE, Vol. 8379, pp.
83790C-83790C-12, 2012.

A. Vatavu, R. Danescu, and S. Nedevschi, "Tracking multiple objects in
traffic scenarios using free-form obstacle delimiters and particle filters",
in Proc. of. ITSC 2013, pp.1346,1351, 6-9 Oct. 2013

A. Vatavu, S. Nedevschi, and F. Oniga, “Real Time Object Delimiters
Extraction for Environment Representation in Driving Scenarios”, In
Proc. of ICINCO-RA 2009, Milano, Italy, 2009, pp 86-93.

S. Thrun, W. Burgard, and D. Fox, "Probabilistic robotics", in MIT
press, 2005.

C. Fulgenzi, A. Spalanzani, C. Laugier, "Probabilistic motion planning
among moving obstacles following typical motion patterns," in Proc of
IROS 2009, pp.4027-4033, 10-15 Oct. 2009

E. Lu, W.-C. Lee, and V. Tseng, "Mining fastest path from trajectories
with multiple destinations in road networks", Knowledge and
Information Systems, pp. 1-29

J. E. Bresenham, "Algorithm for Computer Control of a Digital Plotter",
IBM Systems Journal 4, No.1, 25-30, 1965.

M. Isard and A. Blake. Condensation, “Conditional density propagation
for visual tracking”, in International Journal of Computer Vision,
29(1):5-28, 1998.

A. Doucet, N. De Freitas, K. Murphy, S. Russell, "Rao—Blackwellised
particle filtering for dynamic Bayesian networks" in Proc. of the
Sixteenth conference on Uncertainty in artificial intelligence, 2000,
pp. 176-183.

Gallup, D.; Frahm, J.-M.; Mordohai, P.; Pollefeys, M., "Variable
baseline/resolution stereo," in Proc. of CVPR 2008, pp.1-8, 23-28, 2008
E. Parzen, "On Estimation of a Probability Density Function and Mode",
The Annals of Mathematical Statistics 33, no. 3, pp 1065--1076, 1962
A. Vatavu, S. Nedevschi, "Modeling Unstructured Environments with
Dynamic Persistence Grids and Object Delimiters in Urban Traffic
Scenarios", in Proc. of IV 2013, Gold Coast, Australia, 23-26 June,
2013, pp. 505 - 510.



