Tracking Multiple Objects in Traffic Scenarios using Free-Form
Obstacle Delimiters and Particle Filters

Andrei Vatavu, Radu Danescu and Sergiu Nedevschi, Member, IEEE, Member, IEEE

Abstract—Dynamic environment representation is an
important research task in the field of advanced driving
assistance systems. Usually, the tracking process is influenced
by several factors, such as the unpredictable and deformable
nature of the obstacles, the measurement uncertainties or the
occlusions. This paper presents a stereo-vision based approach
for tracking multiple objects in unstructured environments.
The proposed technique relies on measurement data provided
by an intermediate grid map and the object delimiters
extracted from this grid. We present a particle filter based
tracking solution in which a particle state is described by two
components: the dynamic object parameters, and the object’s
geometry. In order to solve the high dimensionality state space
problem a Rao-Blackwellized Particle Filter is used. The
proposed method takes into consideration the stereo
uncertainties and relies on a weighting mechanism based on the
particle alignment error.

I. INTRODUCTION

Modeling and tracking of dynamic entities is an important
research task in the field of driving assistance systems.
Typically, the tracking mechanism relies on extracting a set
of relevant features from the scene and estimating their state
over time. Despite the simplicity of the general idea, the
dynamic environment representation remains a challenging
problem. Usually, the surrounding world is more complex
and the tracking process is influenced by several factors such
as the unpredictable and deformable nature of the obstacles,
the measurement uncertainties or the occlusions. Considering
the above, an environment perception system must be able to
track multiple objects at the same time, with high accuracy
and confidence.

The tracking systems can be classified by the type of
sensors they use. Most techniques rely on the use of
ultrasound [4], laser [2] or vision sensors [5][6]. Some of the
existing strategies imply directly tracking 3D point clouds [5]
by treating each point independently, whereas other motion
estimation techniques try to minimize the computational cost
by using intermediate representations. The 3D information is
transformed into digital elevation maps [14], octrees [4][10],
occupancy grids [13] or Stixel Maps[15].

Many of the tracking solutions use high level attributes,
including polygonal models [7], difference fronts [8], voxels
[10], 2D boxes, 3D cuboids [6] or object contours [11]. Most
of them work well in structured environments, where the
obstacle’s geometry is known. Usually, the traffic entities are
represented by simplistic models such as bounding boxes and
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the obstacle’s position is determined by its center of mass.
However, in the case of unstructured environments, it is
difficult to use constrained models. The tracking process may
lead to incorrect results when the target pose estimation is
affected by occlusions or by changes in its geometry. In order
to overcome this problem, various algorithms for moving and
deforming objects are proposed [16][17]. Typically, the
model shape is represented implicitly [17], or by a set of
fixed number of points. In particular, the authors in [17]
describe a tracking method for slowly deforming and moving
contours that are represented implicitly. Isard and Blake [18]
propose the CONDENSATION algorithm for tracking
parametric curves.

Most often, the object tracking approaches rely on
Kalman filters [6], Particle filters [14][16][18] or hybrid
methods [20][21]. The traditional Kalman filter represents an
optimal estimator in which the posterior distribution is
modeled by a Gaussian function. However, the classical
Kalman filter solutions are only applicable on linear systems
with unimodal distributions. As an alternative, the particle
filter approaches approximate the state space by a collection
of N discrete samples, called “particles”. Each particle
represents a hypothesis about the system state. One of the
main advantages of the particle filter based solutions is the
ability to handle non-linear systems and multi-modal
distributions. However, particle filters are not suitable for
high-dimensional state spaces as their computational
complexity tends to grow exponentially with the number of
state parameters. In order to handle this problem, different
strategies can be found in the literature. For example, in [19]
the Unscented Kalman Filter is used to propagate the
proposal distribution so that the number of sampled particles
is reduced. In [20] the Rao-Blackwellized Particle Filter
(RBPF) is introduced. The key idea of the RBPF approach is
that a part of the state space can be updated analytically,
while another part of the state is sampled. In [21], the RBPF
is applied for Simultaneous Localization and Mapping
(SLAM). The robot pose is estimated with a particle filter. In
addition, the state vector is represented by N landmarks. Each
landmark position is updated by using a 2x2 Extended
Kalman Filter (EKF). In [2], a RBPF technique is applied for
model based vehicle tracking. For simplicity the vehicle
shape is approximated by a rectangle.

In this paper we present a stereo-vision based approach
for tracking multiple objects in unstructured environments.
The proposed technique relies on measurement data provided
by an intermediate grid map and the object delimiters
extracted from this grid. Unlike other existing methods which
track fixed models, we present a particle filter based solution
for tracking freeform obstacle representations. At each step
the particle state is described by two components: the object



dynamic parameters and its estimated geometry. We consider
that each obstacle model is represented by a polyline with N
vertices (control points). In order to solve the high-
dimensionality state-space problem a Rao-Blackwellized
Particle Filter is used. Therefore, in our case, the obstacle
dynamic properties are estimated by importance sampling
while the geometric properties are computed analytically by
using a Kalman Filter for each key point. The proposed
method takes into consideration the stereo uncertainties and
relies on a weighting mechanism based on the particle
alignment error.

The paper is structured as follows: the next chapter
presents the overall system architecture, the object model is
described in the chapter III, chapter IV shows how the data
association is made, the proposed multiple object tracking
approach and its main steps are detailed in the chapter V,
while the last two sections show the experimental results and
the conclusion about this work.

II. SYSTEM OVERVIEW

The system architecture (see Fig. 1) can be separated into
two main stages: Preprocessing and Tracking.

The Preprocessing module performs a set of tasks prior to
object tracking. First, image pairs are acquired from the two
cameras. Then, stereo reconstruction is performed with a
dedicated TYZX board [1]. The raw dense stereo information
is then used to compute an intermediate classified grid map
[12]. Each grid cell is labeled based on its height information
as: road, traffic isle or obstacle. The intermediate
representation is used to extract object delimiters and to
compute a probabilistic measurement model.

The Tracking stage consists in estimating the optimal
state parameters. First, the data association is performed in
order to assign new measurements to the existing trackers
and to initialize new ones. Then, for each existing individual
tracker the following processing steps are applied: state
prediction, Kalman filtering of object geometry, particle
weighting, estimation, resampling and injection. These steps
will be detailed in the next sections.

III. DATA ASSOCIATION

The data association consists in assigning new
observations to the existing targets. In our case we perform
the data association by computing overlapping scores w;;
between occupancy grid blobs (set of connected cells) at
consecutive time steps. As the result, an association matrix
W:{WU} is formed. The cases when larger blobs are

decomposed into many disjoint parts and vice versa are
treated as separate tracking hypotheses. The data association
approach is described in details in [3].

IV. OBJECT MODEL

Unlike other methods where objects are represented by
fixed templates, we have adopted an approach in which we
consider that the object geometry may change over time due
to factors such as occlusions caused by crossing obstacles,
the dynamic nature of the environment, or noisy

Preprocessing

Dense Stereo

Information Classified
Occupancy Grid
1 \

&

—»  Object Delimiters

Tracking J— A
// Distance Map and
\

< Data Association }» Density Map /\

. Computation /
AN
No /New\
~Jracker
l S~

//—\ e ™
— Resampling ‘ f\ Initialize Particles \
N / g %

AN

,I\

(/ Injection )

Ego-car : N
Odometry Information B Prediction )
—— /

AN

— /

Yes

| Measurement Update |

i/eraIman Filtering of \| v

: ; )i
'\ Key Points !
3 i< | Measurement Model

! Weighting )|

position, speed and
geometry

Estimated Object

Figure 1. System Architecture

Figure 2. Object Model. An object from the traffic scene is represented by
N control points P.. (polygonal vertices), and a reference point P,.s.

measurements. Therefore, an object model (see Fig. 2) is
described by the following properties:

¢ A local reference point P,,r denoting the obstacle position
in the camera coordinate system. The reference point is
initially set to the object center of mass , and is
subsequently estimated by the tracking mechanism.

e The object speed vector V(an"z)

® A set of control points K ={P'(x',z/)li=[1..N_]}
specifying the object shape, and defining the vertices of a

polygonal line. In the initialization step the control points
are determined by selecting N equidistant points along the

object contour. For each control point P'(x!,z!) we also

compute its relative position L'(/,l!) to the reference

pOiIlt Ref (xref ’ Zref) :



In our case the used coordinate system has its origin in
front of the ego-car. The X axis points to the right while the Z
axis points towards the ego-car moving direction.
Considering the notations above, at a time ¢ the obstacle state
is defined as:

zo%x

S, =X,y s 2y VoV LW L 21T (D)

V. OBSTACLE TRACKING

A Bayesian solution to the tracking problem consists in
estimating the current object state S, from a set of noisy
observations Z,, ={Z,,Z,...,Z, }up to the time :

P(S12,,2,..2,) =1p(Z,1S)
[p(S,18,)p(S 120 Z,) P

Srl

where 77 is a normalization constant. The p(Z |S,) term
denotes the measurement model at a time ¢ and p(S, 1S, )
describes the state transition model (motion model) from

St_l to St.

A. Rao-Blackwellized Particle Filter

In a particle-based filtering solution [16][18] the object
state probability is approximated by a set of N weighted
particles p(S,) = {S',w/,i =[1..N]}. Each particle S’
represents a hypothesis of the state of the object at a given
time . Therefore, object tracking consists in estimating the
best state by evaluating the samples S’ and their attached

weightsw, given a motion model and a measurement model.

A disadvantage of the classical particle filtering algorithm
is that it is not suitable for high-dimensional state spaces.
Usually, its computational complexity grows exponentially
with the number of parameters. The “Rao-Blackwellization”
process consists in estimating a part of the object state
analytically, thus reducing the number of dimensions and the
computational cost of the particle filter mechanism. In our
case, the obstacle state S, is split into two parts:

S, =[X,,G,1" 3

where the first component X =[x v.]" describes

ZyorsV
ref > Sref 2 U x?
the obstacle position and speed and the component
G, =[1},1},12,12,...,1Y,1"]" denotes the object geometry.

z2Vx

The overall posterior distribution p(X,,G,1Z,,) defined by
Equation (2) is factored as:

p(Xt’GtlZl:t)zp(XtlZl:t)p(thxt’Zl:t) (4)

The first probability distribution p(X, 1Z, ) denotes the

object position and velocity, and is approximated by a set of
weighted samples{X /' , w',G/,i =[1..N]}. The second term

p(G,1X,,Z,)represents the object geometry posterior
conditioned on X, . Each control point in G, is described by a

mean value and a covariance matrix, (f/,Y /) estimated by

using a 2x2 Kalman filter. The particle set can be now
defined as:

(a) 1g) =X/, B ED D) )

where ;i =[1..N] and j =[1..N,]. Next, we will present the
main steps involved in our object tracking solution.

B. Initialization

The initialization step is applied when new (not tracked)
candidates are detected. This is achieved by comparing the
list of associated blobs with the existing list of individual
trackers. First, the motion parameters describing the initial
state are estimated by applying a fast pairwise alignment of
the associated delimiter pairs (from the previous and current
frames). For this, we use the Iterative Closest Point (ICP)
algorithm described in [3]. Then, a set of initial random
object hypotheses are generated around the measurement
position{g, | ¢, =[X,,w},G;1",i =[1..N]}. Each particle
is initialized with the object geometry G, that is extracted
from the measurement delimiters. It must be noted that a
small amount of new particles (including new hypotheses for
object position and geometry) are added in the Injection step.

C. Prediction

This step consists in predicting the current state S, at
time ¢ given the previous information §, ; and the motion
model p(S, IS, ). First, the particles are moved by applying

a deterministic drift based on the target dynamics. Then, each
predicted sample state is altered according to a random noise.

We also must take into account the ego-vehicle motion in
order to extract its speed from the independent dynamics of
the tracked objects. In our case, the vehicle speed v and the
yaw rate i are obtained from the car sensors. By following
the ego-vehicle motion model with constant yaw rate and
constant speed, the particle positions ( Xy 2,y ) QL€

transformed according to:

Xor o _|cos Y oo—siny | X, B
Zoef ¢ siny cos¥ |z,
where At is the time delay between two frames and y = YA

represents the vehicle rotation angle around the Y axis.

g(l—cos V)
v

VAt .
—siny
v

The position and velocity X, =[x v.]" of each

ZyorsV
ref > “ref> T x?
particle is predicted by using the standard constant velocity
model:

Xy | [1 O A 07x,, .
Lrep | _ 01 0 A Zref e +w (7)
v, 00 1 Of v,

14 00 0 1] v,

The matrix multiplication describes the deterministic drift
component. The stochastic part is defined by the random
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Figure 3. a) Left camera image. b) The occupancy grid projected on the
ground plane. The obstacle delimiters are colored with green. c¢) The
Distance Transform of the extracted delimiters. d) The density map is
generated by taking into account stereo uncertainties and distances to the
closest delimiter points. High intensities indicate high measurement
probability.

noisew ~ N(0,Q) which is drawn from a zero mean
Gaussian distribution with covariance Q. The covariance
matrix Q is estimated considering a certain covariance for the
obstacles’ acceleration.

D. Measurement update

The purpose of this stage is to assign new weights to the
predicted particles based on the measurement model. First,
the object delimiters are extracted from the -current
occupancy grid. Then, the new object geometry is updated by
using a Kalman filter. Finally, new particle weights are
computed by evaluating the alignment error between the
measurement and existing hypotheses.

1) Extracting Object Delimiters: At each frame, object
delimiters are extracted from the occupancy grid (see Fig. 3)
by using the BorderScanner algorithm that is described in
[9]. The main idea of the BorderScanner approach is to

generate an object contour C by selecting the most

measuremert
visible object cellsc,. This is achieved by considering a
virtual ray which extends from the observation point and
moves in a radial direction with fixed increments. At each
step the closest occupied grid cell Oce(c, ) = trueis chosen as

the delimiter point.

C ={c, 10cc(c,) =true,ic [1.M ]} (8)

measuremert

2) Computing Stereo Uncertainties: The next step is to
compute the stereo uncertainties. If we consider that the
stereo-vision system is rectified, then for each grid cell we

can estimate a depth error ¢, and a lateral error o :

o =% 5 %% &)

4 b . f > x z
Where x and z are the real world coordinates of a point, f

denotes the focal length, b is the stereo system baseline and
o, represents the disparity error.

3) Kalman Filtering: This step consists in updating the
particle component Gti with the
measurements. For each control point we use a 2x2 Kalman

geometry new

filter to estimate its state [/ = [l 71 j]T and covariance /.

The Kalman filter observations are determined by selecting N
equidistant points along the object delimiter extracted in the
step 1. For each control point, the measurement covariance
matrix R is computed, by considering the stereo uncertainties
defined in the step 2.

4) Computing the distance to the measurement: The aim
of this step is to determine the closest corresponding
measurement points for each occupancy grid cell. First, we
define a region of interest that covers all the particle space
around the measurement(C Then we compute a

measurement *

modified Distance Transform (see Fig. 3.c). Each point
my, (x,,,2,,) from the distance map will be described by

two values: a distance d, = \/(xdm —x,,) + (2, —24)° tO
the nearest delimiter point C,-( XyosZga) > and a position of
the respective correspondence (x,,,z,,). The probability

density map (see Fig. 3.d) can be determined now for each
cell m,, by converting the distance values according to:

1 G =%t )? L Zam =2 )?
1 2 c? o?
. =——"-~¢€ )

< 2ro.0 } &

where o, and o represent the stereo uncertainties of the
corresponding measurement point.

5) Weighting: This step consists in assigning new weights
Wti to the delimiter hypotheses q; based on their likelihood:

1n

First, we need to define a distance metric between a given
particle and a given observation. This is achieved by
estimating an alignment error between object hypotheses and

the measurement data. For each control point L/ from the
particle q; we determine the closest corresponding point ¢,

p(Z X, =X!,G, =G))

from the measurement C

measurement *

d(L’,C

measuremern )

= mi J 12
ker{rlu]\r} d(l/,c,) (12)

In order to consider the stereo uncertainties we also
. . ] . .
assign a density value 7] to each corresponding pair

(L,c,) . The Euclidean distance d(L/,C, ) and the

measuremen
weight 7] metrics are determined by superimposing the



particle model on the two maps estimated in the previous
step. The alignment error is computed according to:

N,
d(L] measuremeni ) 13
altgnment Z : ( )
J=1 Z ”L
Finally, the overall particle weight wt' is computed:
1 Dazlignmem
i = e X o (14)

270,

E. Estimation

The current mean state at time ¢ is estimated by using a
weighted average:

(15)

N
S=>wS;
i=1
F. Resampling and Injection

The resampling step consists in drawing from the
previous particle set with a sampling probability proportional
to the assigned weights. Thus, the particles with low
importance are removed while the samples with large weights
are replicated.

However, there are cases when sharp changes in the
traffic scene may lead to the estimation of erroneous states.
This may happen due to the fact that there are no sufficient
hypotheses in the vicinity of the true state (particle
deprivation problem). As the solution, we introduced an
Injection step where a small amount of particles with low
importance are replaced with new completely random
samples that are drawn around the measurement. Through the
Injection step we also introduce new hypotheses for object
geometry.

VI. EXPERIMENTAL RESULTS

The proposed object tracking approach was tested on
various sequences of urban traffic scenes, including partially
visible obstacles of different type, size and shape. We
performed our experiments on a computer equipped with an
Intel Core 2 Duo E6750 CPU at 2.66GHz and 4GB of RAM.
The occupancy grid used in our solution has a resolution of
240 rows x 500 columns (0.1 m x 0.1 m cells).

Fig. 4 shows the results of the proposed object tracking
method, including intermediate steps and the final results. In
Fig. 4.b is presented a case when the initialization step is
applied for all objects. Usually, this occurs at the beginning
of a traffic sequence, when the list of individual trackers is
empty. Fig. 4.c illustrates the same test scenario, two frames
later. It can be observed that particles are clustered around
each individual tracked object. The estimated mean state is
colored with light blue. The predicted samples are colored
with magenta. The picture also illustrates the influence of
weighting and resampling steps (dark blue) on the predicted
population of particles. Fig. 4.d shows a particular case when
the initialization step is applied to a newly detected tracker. A
set of initial random object hypotheses (red color) are
generated around the measurement position. In Fig. 5.e is

i
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Figure 4. Multiple Object Tracking. a) An image of a traffic scene. b)
Particle Filter Initialization step. c) Individual object tracker particles. d)
The initialization step is applied to a new detected tracker. ) The resulting
dynamic object representation.

—

Figure 5. Comparative results between the measurement delimiter (blue)
and the analytically tracked geometry (red).

shown the resulted dynamic object representation based on
the extracted object delimiters. The object height properties
are inherited form the occupancy grid blobs and are used as
an additional cue when generating 3D polygonal models.
Each detected obstacle is color coded, the color hue
describing the orientation of a moving obstacle, while the
saturation describes its speed (e.g. yellow — for incoming
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Figure 6. Object speed estimation. Comparison between RBPF based
motion estimation (red color) and a cuboid based tracking method (green
color).

objects, blue — for outgoing objects). Fig. 5 presents
comparative results between the measurement delimiter
(blue) and the analytically tracked geometry (red). Fig. 6
shows a comparative result between the RBPF based object
motion estimation method and a Kalman filter based cuboidal
tracking solution [6]. The test implies a crossing vehicle that
is in the field of view for only 25 frames. It can be observed
that the proposed RBPF tracking technique is able to provide
the speed estimation results earlier, compared with the
cuboidal based tracking method which uses a preselection
step in order to validate a new tracker. The time performance
of the algorithm depends on the number of tracked objects,
the number of used particles per object and the number of
control points per model. The algorithm complexity scales
linearly with the number of trackers. In our tests sequences,
the average number of tracked objects was 6. For each object
we set up a fixed number of 80 particles and a fixed number
of 20 control points per sample. The average processing time
of the algorithm was about 99.83ms per frame.

VII. CONCLUSIONS

In this paper we proposed a stereo-vision based approach
for tracking multiple objects in urban traffic scenarios. The
solution is based on the information provided by a classified
occupancy grid. Unlike the other existing methods that
consist in tracking fixed models, we propose a particle filter
based solution for tracking free-form  obstacle
representations. At each step the particle state is described by
two components: the object dynamic parameters, and its
estimated geometry. In order to solve the high-dimensionality
state-space problem a Rao-Blackwellized solution is used,
where the obstacle dynamic properties are estimated by
importance sampling while the geometric properties are
computed analytically by using a Kalman Filter for each key
point. Inspired by the laser based scan matching techniques
such as Iterative Closest Points (ICP) algorithm, we
developed a weighting mechanism that relies on evaluating
the particle alignment error by finding point-to-point
correspondences between the particle model and the
measurement. The presented probabilistic tracking solution
takes into consideration the stereo uncertainties introduced by
the sensorial system. As future work, we propose to improve
the accuracy of our solution by including the intensity
information, as in the optical flow techniques. We also intend
to improve the system processing time by further
optimizations.
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