
  

  

Abstract—Dynamic environment representation is an 

important research task in the field of advanced driving 

assistance systems. Usually, the tracking process is influenced 

by several factors, such as the unpredictable and deformable 

nature of the obstacles, the measurement uncertainties or the 

occlusions. This paper presents a stereo-vision based approach 

for tracking multiple objects in unstructured environments. 

The proposed technique relies on measurement data provided 

by an intermediate grid map and the object delimiters 

extracted from this grid. We present a particle filter based 

tracking solution in which a particle state is described by two 

components: the dynamic object parameters, and the object’s 

geometry. In order to solve the high dimensionality state space 

problem a Rao-Blackwellized Particle Filter is used. The 

proposed method takes into consideration the stereo 

uncertainties and relies on a weighting mechanism based on the 

particle alignment error. 

I. INTRODUCTION 

Modeling and tracking of dynamic entities is an important 
research task in the field of driving assistance systems. 
Typically, the tracking mechanism relies on extracting a set 
of relevant features from the scene and estimating their state 
over time. Despite the simplicity of the general idea, the 
dynamic environment representation remains a challenging 
problem. Usually, the surrounding world is more complex 
and the tracking process is influenced by several factors such 
as the unpredictable and deformable nature of the obstacles, 
the measurement uncertainties or the occlusions. Considering 
the above, an environment perception system must be able to 
track multiple objects at the same time, with high accuracy 
and confidence. 

The tracking systems can be classified by the type of 
sensors they use. Most techniques rely on the use of 
ultrasound [4], laser [2] or vision sensors [5][6]. Some of the 
existing strategies imply directly tracking 3D point clouds [5] 
by treating each point independently, whereas other motion 
estimation techniques try to minimize the computational cost 
by using intermediate representations. The 3D information is 
transformed into digital elevation maps [14], octrees [4][10], 
occupancy grids [13] or Stixel Maps[15].  

Many of the tracking solutions use high level attributes, 
including polygonal models [7], difference fronts [8], voxels 
[10], 2D boxes, 3D cuboids [6] or object contours [11]. Most 
of them work well in structured environments, where the 
obstacle’s geometry is known. Usually, the traffic entities are 
represented by simplistic models such as bounding boxes and 
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the obstacle’s position is determined by its center of mass. 
However, in the case of unstructured environments, it is 
difficult to use constrained models. The tracking process may 
lead to incorrect results when the target pose estimation is 
affected by occlusions or by changes in its geometry. In order 
to overcome this problem, various algorithms for moving and 
deforming objects are proposed [16][17]. Typically, the 
model shape is represented implicitly [17], or by a set of 
fixed number of points. In particular, the authors in [17] 
describe a tracking method for slowly deforming and moving 
contours that are represented implicitly. Isard and Blake [18] 
propose the CONDENSATION algorithm for tracking 
parametric curves. 

Most often, the object tracking approaches rely on 
Kalman filters [6], Particle filters [14][16][18] or hybrid 
methods [20][21]. The traditional Kalman filter represents an 
optimal estimator in which the posterior distribution is 
modeled by a Gaussian function.  However, the classical 
Kalman filter solutions are only applicable on linear systems 
with unimodal distributions. As an alternative, the particle 
filter approaches approximate the state space by a collection 
of N discrete samples, called “particles”. Each particle 
represents a hypothesis about the system state. One of the 
main advantages of the particle filter based solutions is the 
ability to handle non-linear systems and multi-modal 
distributions. However, particle filters are not suitable for 
high-dimensional state spaces as their computational 
complexity tends to grow exponentially with the number of 
state parameters. In order to handle this problem, different 
strategies can be found in the literature. For example, in [19] 
the Unscented Kalman Filter is used to propagate the 
proposal distribution so that the number of sampled particles 
is reduced. In [20] the Rao-Blackwellized Particle Filter 
(RBPF) is introduced. The key idea of the RBPF approach is 
that a part of the state space can be updated analytically, 
while another part of the state is sampled. In [21], the RBPF 
is applied for Simultaneous Localization and Mapping 
(SLAM). The robot pose is estimated with a particle filter. In 
addition, the state vector is represented by N landmarks. Each 
landmark position is updated by using a 2x2 Extended 
Kalman Filter (EKF).  In [2], a RBPF technique is applied for 
model based vehicle tracking. For simplicity the vehicle 
shape is approximated by a rectangle. 

In this paper we present a stereo-vision based approach 
for tracking multiple objects in unstructured environments. 
The proposed technique relies on measurement data provided 
by an intermediate grid map and the object delimiters 
extracted from this grid. Unlike other existing methods which 
track fixed models, we present a particle filter based solution 
for tracking freeform obstacle representations. At each step 
the particle state is described by two components: the object 
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dynamic parameters and its estimated geometry. We consider 
that each obstacle model is represented by a polyline with N 
vertices (control points). In order to solve the high-
dimensionality state-space problem a Rao-Blackwellized 
Particle Filter is used. Therefore, in our case, the obstacle 
dynamic properties are estimated by importance sampling 
while the geometric properties are computed analytically by 
using a Kalman Filter for each key point. The proposed 
method takes into consideration the stereo uncertainties and 
relies on a weighting mechanism based on the particle 
alignment error. 

The paper is structured as follows: the next chapter 
presents the overall system architecture, the object model is 
described in the chapter III, chapter IV shows how the data 
association is made, the proposed multiple object tracking 
approach and its main steps are detailed in the chapter V, 
while the last two sections show the experimental results and 
the conclusion about this work. 

II. SYSTEM OVERVIEW 

The system architecture (see Fig. 1) can be separated into 
two main stages: Preprocessing and Tracking. 

The Preprocessing module performs a set of tasks prior to 
object tracking. First, image pairs are acquired from the two 
cameras. Then, stereo reconstruction is performed with a 
dedicated TYZX board [1]. The raw dense stereo information 
is then used to compute an intermediate classified grid map 
[12]. Each grid cell is labeled based on its height information 
as: road, traffic isle or obstacle. The intermediate 
representation is used to extract object delimiters and to 
compute a probabilistic measurement model. 

The Tracking stage consists in estimating the optimal 
state parameters. First, the data association is performed in 
order to assign new measurements to the existing trackers 
and to initialize new ones. Then, for each existing individual 
tracker the following processing steps are applied: state 
prediction, Kalman filtering of object geometry, particle 
weighting, estimation, resampling and injection. These steps 
will be detailed in the next sections. 

III. DATA ASSOCIATION 

The data association consists in assigning new 
observations to the existing targets. In our case we perform 
the data association by computing overlapping scores wij 
between occupancy grid blobs (set of connected cells) at 
consecutive time steps. As the result, an association matrix 

}{ ijwW =  is formed. The cases when larger blobs are 

decomposed into many disjoint parts and vice versa are 
treated as separate tracking hypotheses. The data association 
approach is described in details in [3]. 

IV. OBJECT MODEL 

Unlike other methods where objects are represented by 
fixed templates, we have adopted an approach in which we 
consider that the object geometry may change over time due 
to factors such as occlusions caused by crossing obstacles, 
the dynamic nature of the environment, or noisy  

 
Figure 1.  System Architecture 

 
Figure 2.  Object Model. An object from the traffic scene is represented by 
N control points Pc

i
. (polygonal vertices), and a reference point Pref . 

measurements. Therefore, an object model (see Fig. 2) is 
described by the following properties: 

• A local reference point Pref denoting the obstacle position 
in the camera coordinate system. The reference point is 
initially set to the object center of mass , and is 
subsequently estimated by the tracking mechanism. 

• The object speed vector ),( zx vvV
r
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specifying the object shape, and defining the vertices of a 
polygonal line. In the initialization step the control points 
are determined by selecting N equidistant points along the 

object contour. For each control point ),( i
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In our case the used coordinate system has its origin in 
front of the ego-car. The X axis points to the right while the Z 
axis points towards the ego-car moving direction. 
Considering the notations above, at a time t the obstacle state 
is defined as: 

 TN

z

N

xzxzxzxrefreft llllllvvzxS ],,...,,,,,,,,[
2211

=  (1) 

V. OBSTACLE TRACKING 

A Bayesian solution to the tracking problem consists in 
estimating the current object state St, from a set of noisy 

observations }...,,{ 21:1 tt ZZZZ = up to the time t: 
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where η  is a normalization constant. The )|( tt SZp  term 

denotes the measurement model at a time t and )|( 1−tt SSp

describes the state transition model (motion model) from 

1−tS  to 
tS . 

A.  Rao-Blackwellized Particle Filter 

In a particle-based filtering solution [16][18] the object 
state probability is approximated by a set of N weighted 

particles ]}..1[,,{)( NiwSSp
i

t

i

tt =≈ . Each particle i

t
S  

represents a hypothesis of the state of the object at a given 
time t. Therefore, object tracking consists in estimating the 

best state by evaluating the samples i

tS  and their attached 

weights i

tw , given a motion model and a measurement model. 

A disadvantage of the classical particle filtering algorithm 
is that it is not suitable for high-dimensional state spaces. 
Usually, its computational complexity grows exponentially 
with the number of parameters. The “Rao-Blackwellization” 
process consists in estimating a part of the object state 
analytically, thus reducing the number of dimensions and the 
computational cost of the particle filter mechanism. In our 
case, the obstacle state St is split into two parts: 

 T

ttt GXS ],[=  (3) 

where the first component T

zxrefreft vvzxX ],,,[=  describes 

the obstacle position and speed and the component 
TN

z

N

xzxzxt llllllG ],,...,,,,[ 2211=  denotes the object geometry. 

The overall posterior distribution )|,( :1 ttt ZGXp  defined by 

Equation (2) is factored as: 

 ),|()|()|,( :1:1:1 tttttttt ZXGpZXpZGXp =  (4) 

The first probability distribution )|( :1 tt ZXp  denotes the 

object position and velocity, and is approximated by a set of 

weighted samples ]}..1[,,,{ NiGwX
i

t

i

t

i

t = . The second term 

),|( :1 ttt ZXGp represents the object geometry posterior 

conditioned on
tX . Each control point in 

tG  is described by a 

mean value and a covariance matrix, ),ˆ( jj
L ∑  estimated by 

using a 2x2 Kalman filter. The particle set can be now 
defined as: 
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where ]..1[ Ni =  and ]..1[ cNj = . Next, we will present the 

main steps involved in our object tracking solution. 

B. Initialization 

The initialization step is applied when new (not tracked) 
candidates are detected. This is achieved by comparing the 
list of associated blobs with the existing list of individual 
trackers. First, the motion parameters describing the initial 
state are estimated by applying a fast pairwise alignment of 
the associated delimiter pairs (from the previous and current 
frames). For this, we use the Iterative Closest Point (ICP) 
algorithm described in [3]. Then, a set of initial random 
object hypotheses are generated around the measurement 

position ]}..1[,],,[|{ 00000 NiGwXqq
Tiiiii == . Each particle 

is initialized with the object geometry
0G  that is extracted 

from the measurement delimiters. It must be noted that a 
small amount of new particles (including new hypotheses for 
object position and geometry) are added in the Injection step. 

C. Prediction 

This step consists in predicting the current state 
tS  at 

time t given the previous information 
1−tS  and the motion 

model )|( 1−tt SSp . First, the particles are moved by applying 

a deterministic drift based on the target dynamics. Then, each 
predicted sample state is altered according to a random noise. 

We also must take into account the ego-vehicle motion in 
order to extract its speed from the independent dynamics of 
the tracked objects. In our case, the vehicle speed v and the 

yaw rate ψ&  are obtained from the car sensors. By following 

the ego-vehicle motion model with constant yaw rate and 

constant speed, the particle positions ),( refref zx  are 

transformed according to: 
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where t∆  is the time delay between two frames and t∆=ψψ &  

represents the vehicle rotation angle around the Y axis. 

The position and velocity T

zxrefreft vvzxX ],,,[= of each 

particle is predicted by using the standard constant velocity 
model: 
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The matrix multiplication describes the deterministic drift 
component. The stochastic part is defined by the random  



  

 
Figure 3.  a) Left camera image. b) The occupancy grid projected on the 

ground plane. The obstacle delimiters are colored with green. c) The 

Distance Transform of the extracted delimiters. d) The density map is 

generated by taking into account stereo uncertainties and distances to the 

closest delimiter points. High intensities indicate high measurement 
probability. 

noise ),0(~ QNw which is drawn from a zero mean 

Gaussian distribution with covariance Q. The covariance 
matrix Q is estimated considering a certain covariance for the 
obstacles’ acceleration. 

D. Measurement update 

The purpose of this stage is to assign new weights to the 
predicted particles based on the measurement model. First, 
the object delimiters are extracted from the current 
occupancy grid. Then, the new object geometry is updated by 
using a Kalman filter. Finally, new particle weights are 
computed by evaluating the alignment error between the 
measurement and existing hypotheses. 

1) Extracting Object Delimiters: At each frame, object 
delimiters are extracted from the occupancy grid (see Fig. 3) 
by using the BorderScanner algorithm that is described in 
[9]. The main idea of the BorderScanner approach is to 

generate an object contour 
tmeasuremenC  by selecting the most 

visible object cells
ic . This is achieved by considering a 

virtual ray which extends from the observation point and 
moves in a radial direction with fixed increments. At each 

step the closest occupied grid cell truecOcc i =)( is chosen as 

the delimiter point. 

 { }]..1[,)(| ciitmeasuremen MitruecOcccC ∈==  (8) 

2) Computing Stereo Uncertainties: The next step is to 
compute the stereo uncertainties. If we consider that the 
stereo-vision system is rectified, then for each grid cell we 

can estimate a depth error 
zσ  and a lateral error 

xσ : 
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Where x and z are the real world coordinates of a point, f 
denotes the focal length, b is the stereo system baseline and 

dσ represents the disparity error. 

3) Kalman Filtering: This step consists in updating the 

particle geometry component i

t
G  with the new 

measurements. For each control point we use a 2x2 Kalman 

filter to estimate its state [ ]Tj

z

j

x

j llL ,ˆ = and covariance j∑ .  

The Kalman filter observations are determined by selecting N 
equidistant points along the object delimiter extracted in the 
step 1. For each control point, the measurement covariance 
matrix R is computed, by considering the stereo uncertainties 
defined in the step 2. 

4) Computing the distance to the measurement: The aim 
of this step is to determine the closest corresponding 
measurement points for each occupancy grid cell. First, we 
define a region of interest that covers all the particle space 

around the measurement
tmeasuremenC . Then we compute a 

modified Distance Transform (see Fig. 3.c). Each point 

),( dmdmdm zxm  from the distance map will be described by 

two values: a distance 22 )()( deldmdeldmm zzxxd −+−=  to 

the nearest delimiter point ),( deldelj zxc  , and a position of 

the respective correspondence ),( deldel zx . The probability 

density map (see Fig. 3.d) can be determined now for each 

cell 
dmm  by converting the distance values according to: 
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where 
x

σ  and 
z

σ represent the stereo uncertainties of the 

corresponding measurement point. 

5) Weighting: This step consists in assigning new weights 
i

tw  to the delimiter hypotheses i

t
q  based on their likelihood: 
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First, we need to define a distance metric between a given 
particle and a given observation. This is achieved by 
estimating an alignment error between object hypotheses and 

the measurement data. For each control point j
L  from the 

particle i

t
q  we determine the closest corresponding point 

kc  

from the measurement 
tmeasuremenC : 
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In order to consider the stereo uncertainties we also 

assign a density value j

L
π  to each corresponding pair 
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j
cL . The Euclidean distance ),(
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weight j

Lπ  metrics are determined by superimposing the 

 



  

particle model on the two maps estimated in the previous 
step. The alignment error is computed according to: 

 ∑
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Finally, the overall particle weight 
i

t
w  is computed: 
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E. Estimation 

The current mean state at time t is estimated by using a 
weighted average: 
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F. Resampling and Injection 

The resampling step consists in drawing from the 
previous particle set with a sampling probability proportional 
to the assigned weights. Thus, the particles with low 
importance are removed while the samples with large weights 
are replicated. 

However, there are cases when sharp changes in the 
traffic scene may lead to the estimation of erroneous states. 
This may happen due to the fact that there are no sufficient 
hypotheses in the vicinity of the true state (particle 
deprivation problem). As the solution, we introduced an 
Injection step where a small amount of particles with low 
importance are replaced with new completely random 
samples that are drawn around the measurement. Through the 
Injection step we also introduce new hypotheses for object 
geometry. 

VI. EXPERIMENTAL RESULTS 

The proposed object tracking approach was tested on 
various sequences of urban traffic scenes, including partially 
visible obstacles of different type, size and shape. We 
performed our experiments on a computer equipped with an 
Intel Core 2 Duo E6750 CPU at 2.66GHz and 4GB of RAM.  
The occupancy grid used in our solution has a resolution of 
240 rows x 500 columns (0.1 m x 0.1 m cells).  

Fig. 4 shows the results of the proposed object tracking 
method, including intermediate steps and the final results. In 
Fig. 4.b is presented a case when the initialization step is 
applied for all objects. Usually, this occurs at the beginning 
of a traffic sequence, when the list of individual trackers is 
empty. Fig. 4.c illustrates the same test scenario, two frames 
later. It can be observed that particles are clustered around 
each individual tracked object. The estimated mean state is 
colored with light blue. The predicted samples are colored 
with magenta. The picture also illustrates the influence of 
weighting and resampling steps (dark blue) on the predicted 
population of particles. Fig. 4.d shows a particular case when 
the initialization step is applied to a newly detected tracker. A 
set of initial random object hypotheses (red color) are 
generated around the measurement position.  In Fig. 5.e is  

 
Figure 4.   Multiple Object Tracking. a) An image of a traffic scene. b) 

Particle Filter Initialization step. c) Individual object tracker particles. d) 

The initialization step is applied to a new detected tracker. e) The resulting 

dynamic object representation.  

 
Figure 5.  Comparative results between the measurement delimiter (blue) 

and the analytically tracked geometry (red). 

shown the resulted dynamic object representation based on 
the extracted object delimiters. The object height properties 
are inherited form the occupancy grid blobs and are used as 
an additional cue when generating 3D polygonal models. 
Each detected obstacle is color coded, the color hue 
describing the orientation of a moving obstacle, while the 
saturation describes its speed (e.g. yellow – for incoming  

 



  

 
Figure 6.  Object speed estimation. Comparison between RBPF based 

motion estimation (red color) and a cuboid based tracking method (green 
color). 

objects, blue – for outgoing objects). Fig. 5 presents 
comparative results between the measurement delimiter 
(blue) and the analytically tracked geometry (red). Fig. 6 
shows a comparative result between the RBPF based object 
motion estimation method and a Kalman filter based cuboidal 
tracking solution [6]. The test implies a crossing vehicle that 
is in the field of view for only 25 frames. It can be observed 
that the proposed RBPF tracking technique is able to provide 
the speed estimation results earlier, compared with the 
cuboidal based tracking method which uses a preselection 
step in order to validate a new tracker. The time performance 
of the algorithm depends on the number of tracked objects, 
the number of used particles per object and the number of 
control points per model. The algorithm complexity scales 
linearly with the number of trackers. In our tests sequences, 
the average number of tracked objects was 6. For each object 
we set up a fixed number of 80 particles and a fixed number 
of 20 control points per sample. The average processing time 
of the algorithm was about 99.83ms per frame. 

VII. CONCLUSIONS 

In this paper we proposed a stereo-vision based approach 
for tracking multiple objects in urban traffic scenarios. The 
solution is based on the information provided by a classified 
occupancy grid. Unlike the other existing methods that 
consist in tracking fixed models, we propose a particle filter 
based solution for tracking free-form obstacle 
representations. At each step the particle state is described by 
two components: the object dynamic parameters, and its 
estimated geometry. In order to solve the high-dimensionality 
state-space problem a Rao-Blackwellized solution is used, 
where the obstacle dynamic properties are estimated by 
importance sampling while the geometric properties are 
computed analytically by using a Kalman Filter for each key 
point. Inspired by the laser based scan matching techniques 
such as Iterative Closest Points (ICP) algorithm, we 
developed a weighting mechanism that relies on evaluating 
the particle alignment error by finding point-to-point 
correspondences between the particle model and the 
measurement. The presented probabilistic tracking solution 
takes into consideration the stereo uncertainties introduced by 
the sensorial system. As future work, we propose to improve 
the accuracy of our solution by including the intensity 
information, as in the optical flow techniques. We also intend 
to improve the system processing time by further 
optimizations.   
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