
  

  

Abstract—Modeling and tracking of dynamic objects is a 
challenging research problem in the field of driving assistance 
systems. Typically, the environment to be tracked is 
heterogeneous and unstructured. As a consequence, the tracking 
system must deal with measurement uncertainties, occlusions or 
deformable objects. In this paper we propose a real-time object 
tracking solution for dynamic unstructured environments. This 
method relies on stereo vision-based 3D information that is 
mapped into an intermediate digital elevation map. We apply a 
recursive Bayesian approach for estimating both the obstacle 
dynamic parameters and its geometry. In order to compute the 
obstacle motion we use an Iterative Closest Points-based 
registration technique that takes into consideration the stereo 
uncertainties. In our case, the object model is represented by a 
reference point and N delimiter landmarks. For each target we 
apply a Kalman filter in order to track the obstacle position and 
speed. In addition, the object geometry is updated by using an 
independent 2x2 Kalman filter for each delimiter landmark. The 
proposed method works in real-time and takes into 
consideration the stereo uncertainties. 

I. INTRODUCTION 

Modeling and tracking of dynamic obstacles is an 
essential research topic in the field of driving assistance 
systems. Usually, the tracking module relies on extracting a 
set of key features from the scene and estimating their state 
over time. Existing research solutions use vision [5][6], 
ultrasound [4] or laser sensors [2][3]. Despite the simplicity 
of the main idea, the modeling and tracking of the dynamic 
objects remains a challenging task. Typically, the 
environment to be tracked is heterogeneous and unstructured 
and the tracking system must deal with measurement 
uncertainties, occlusions, deformable objects or unpredictable 
behavior of the traffic entities. In such complex situations, a 
driving assistance system must be able to represent and track 
multiple obstacles in real-time, with high confidence and high 
accuracy. 

The motion estimation approaches can be applied at 
different representation levels. Some of the existing 
techniques imply directly tracking 3D point clouds [5], while 
other solutions try to minimize the computational cost by 
using intermediate representations. The 3D information is 
transformed into occupancy grids [13], octrees [4][10], Stixel 
maps [15], voxels [10] or digital elevation maps [14]. Most 
of the tracking methods use high level attributes such as 
object contours [11][12], difference fronts [8], polygonal 
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models [7], 2D boxes or 3D cuboids [2][6]. Usually, the 
existing approaches work well in structured environments, 
where the obstacle’s geometry is known. Typically, the traffic 
entities are represented by simplistic models such as 
bounding boxes and the obstacle’s position is determined by 
its center of mass. However it is difficult to use constrained 
models when the surrounding world is unstructured. The 
target pose estimation may be affected by occlusions or by 
changes in its geometry and the tracking mechanism may lead 
to erroneous results. In order to overcome this problem, 
various algorithms for moving and deforming objects are 
proposed [16][17]. Most often, the model shape is 
represented implicitly [17], or by a set of fixed number of 
points. For example, the authors in [17] present a tracking 
solution for slowly deforming and moving contours that are 
represented implicitly. Isard and Blake [18] introduce the 
CONDENSATION algorithm for tracking parametric curves. 
In [23], the authors propose a real-time tracking approach by 
using level sets. Usually, the obstacle tracking techniques rely 
on variants of Kalman filters [6], particle filters [16][18] or 
hybrid solutions [2][20][21]. In [6], a Kalman filter is used to 
track objects that are modeled as cuboids. In [2], a Rao-
Blackwellized Particle Filter is applied to estimate both 
dynamic and geometric properties of the tracked cars. For 
simplicity the vehicle shape is approximated by a rectangle. 
The classical Kalman filter based estimators are suitable for 
linear systems in which the posterior distribution is modeled 
by a Gaussian function. As an alternative, the particle filter 
based methods approximate the state space by a collection of 
N discrete samples. Their advantage is the ability to handle 
non-linear systems and multi-modal distributions. However, 
particle filters are not suitable for high-dimensional states as 
their computational complexity tends to grow exponentially 
with the number of state parameters. 

The existing tracking methods also differ by the way the 
correct correspondences are computed. Direct scan matching 
approaches such as Iterative Closest Points (ICP) algorithm 
[1] are used for aligning new measurements to the existing 
models. However, in the case of laser-based systems, the 
object registration in subsequent scans is hard to be achieved 
when the traffic objects or the ego-car moves at high speeds 
or when the measurement uncertainties are not taken into 
consideration. 

In this paper we propose a real-time object tracking 
solution for dynamic unstructured environments. Our method 
relies on stereo vision-based 3D information that is mapped 
into an intermediate digital elevation map. The resulted grid 
of elevations is used to perform the data association and to 
extract a set of free-form object delimiters. We propose a 
recursive Bayesian approach for estimating both the obstacle 
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dynamic parameters and its geometry. In order to compute 
the obstacle motion we apply an Iterative Closest Points-
based alignment between the extracted delimiters and the 
associated trackers. Unlike other solutions where objects are 
represented by fixed templates, we have adopted an approach 
in which we consider that the obstacle shape may gradually 
change over time. In our case, the object model is represented 
by a reference point and N delimiter landmarks (control 
points). For each target we apply a Kalman filter in order to 
track the obstacle position and speed. In addition, the object 
geometry is updated by using an independent 2x2 Kalman 
filter for each delimiter landmark. The proposed method 
works in real-time and takes into consideration the stereo 
uncertainties. 

The paper is structured as follows: the next section 
presents the system architecture, the preprocessing stage is 
described in chapter III, the object model is presented in 
chapter IV while the proposed obstacle tracking algorithm is 
detailed in chapter V. The last two sections present the 
experimental results and conclude this work. 

II.  SYSTEM OVERVIEW 

The system architecture (see Fig. 1) comprises of three 
main components: Intermediate Representation, 
Preprocessing and Tracking. 

The first component acquires image pairs from the two 
cameras. Next, stereo reconstruction is applied with a 
dedicated TYZX board [22]. The raw dense stereo 
information is then used to compute an intermediate 
classified grid [14]. Each grid cell is labeled based on its 
height value as: obstacle, traffic isle or road (see Fig. 2.b and 
c).  

The Preprocessing component performs a set of tasks 
prior to object tracking stage. In this step, the resulted 
classified grid is used to assign new measurements to the 
existing trackers and to extract obstacle delimiters. 

The Tracking level consists in estimating the optimal state 
parameters. For each existing individual tracker, the 
following processing steps are applied: prediction, motion 
estimation, updating the object dynamic parameters (position 
and speed) and updating the object geometry. We will detail 
each of these steps in the following sections. 

III.  PREPROCESSING 

The Preprocessing module performs a set of tasks prior to 
object tracking stage. 

A.  Data Association 

The data association step assigns new observations to the 
existing targets. In our case we perform the data association 
by computing overlapping scores between the occupancy grid 
blobs at consecutive time steps. We define a blob A in the 
current frame as a collection of connected cells that are 
occupied: 

 ]}..1[,)(|{ Aii NitrueaOccaA ===  (1) 

 

 

Figure 1.  System Overview 

where )( iaOcc  is true when a cell ai is occupied and false 

when not. Similarly, a certain blob from the previous frame is 
described as: 

 ]}..1[,)(|{ Bii NitruebOccbB ===  (2) 

We denote with ),( ji baO the overlap function between 

two points from A and B. This function is 1 when the two 
occupied cells overlap and 0 otherwise. For each blob from 
the previous frame A and each blob from the current frame B 
we compute an overlapping score: 
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As the result, a score matrix }{ ijwW =  is formed. In 

order to consider the cases when larger blobs are split into 
many disjoint parts and vice versa, we define two cases: the 
most likely association from A to B (forward association): 
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association): 
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Figure 2.  a) Left camera image b) A virtual view with the resulted grid of 
elevations and the extracted delimiters. The grid cells are classified as road 
(blue), obstacle (red) and traffic isle (yellow). c) The elevation map is 
projected on the ground plane. d) The top view of the extracted delimiters. 
The obstacle delimiters are represented with green while the traffic isle 
delimiters are colored with orange. 

B. Extracting Object Delimiters 

At each time step, the object delimiters are extracted from 
the occupancy grid by using the Border Scanner algorithm 
that is described in [9]. The main idea of the Border Scanner 
approach is to generate an object contour 

objectC  by selecting 

the most visible object cellsic . This is achieved by 

considering a virtual ray which extends from the observation 
point and moves in a radial direction with fixed increments. 
At each step the closest occupied grid cell truecOcc i =)(  is 

chosen as the delimiter point (see Fig. 2.d). 

 { }]..1[,)(| ciiobject MitruecOcccC ∈==  (6) 

IV.  OBJECT MODEL 

In order to deal with deformable obstacles we consider 
that the object shape may gradually change over time due to 
factors such as the dynamic nature of the environment, noisy 
measurements or occlusions.  

In our solution, an object is described by the following 
parameters (see Fig. 3): 

• A local reference point Pref denoting the obstacle position 
in the camera coordinate system. The reference point is 
initially set to the object center of mass, and is 
subsequently estimated by the tracking mechanism. 

• The object speed vector ),( zx vvV
r

 

• A set of landmarks ]}..1[|),({ c
i
c

i
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i
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specifying the object shape, and defining the vertices of a 
polygonal line. Initially, the model landmarks (control 
points) are set by selecting N equidistant points along the 
object contour. Then, these landmarks are updated as new 
observations become available. For each landmark  

 
Figure 3.  Object Model. An object is represented by a reference point Pref, 
and a set of N landmarks Pc
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In our case the coordinate system has its origin in front of 
the ego-vehicle. The X axis points to the right while the Z 
axis points towards the ego-car direction. Considering the 
notations above, at a time t the obstacle state is defined as: 

 TN
z
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V. OBJECT TRACKING 

From a Bayesian perspective, the tracking problem 
consists in estimating the current object state St, from a set of 
noisy measurements }...,,{ 21:1 tt ZZZZ = up to the time t: 
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where η  represents a normalization constant. The )|( tt SZp  

term describes the measurement model at a time t and 
)|( 1−tt SSp denotes the state transition model (motion model) 

from 1−tS  to tS . 

In our approach, we split the obstacle state St into two 
parts: 

 T
ttt GXS ],[=  (10) 

where the first component T
zxrefreft vvzxX ],,,[=  denotes the 

object position and speed while the component 
TN

z
N
xzxzxt llllllG ],,...,,,,[ 2211=  defines the obstacle geometry. 

The overall posterior distribution )|,( :1ttt ZGXp  defined by 

(9) is decomposed as: 

 ),|()|()|,( :1:1:1 tttttttt ZXGpZXpZGXp =  (11) 

The first distribution )|( :1tt ZXp  describes the object 

dynamic parameters, while the second term ),|( :1ttt ZXGp  

denotes the object geometry posterior conditioned on tX . 

 

 



  

Both terms are estimated analytically by using Kalman filters. 
Therefore, we first estimate the obstacle position and speed. 
Then, each landmark in 

tG  being described by a mean value 

and a covariance matrix ),ˆ( jjL ∑ , is updated by using a 2x2 
Kalman filter. In the next sections we detail the main steps of 
our tracking solution. 

A. Prediction 

This step predicts the current state tS  at time t given the 

previous information 1−tS  and the motion model )|( 1−tt SSp . 

First, based on the ego-car motion we extract its velocity 
from the independent dynamics of the tracked objects. In our 
case, we obtain the vehicle speed v and the yaw rate ψ&  from 
the car sensors. By following the ego-vehicle motion model 
with constant yaw rate and constant speed, the object position 

),( refref zx  is transformed according to: 
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where t∆  is the time delay between two frames and t∆=ψψ &  
denotes the ego-vehicle rotation angle around the Y axis. The 
position and velocity T

zxrefreft vvzxX ],,,[= of each tracked 

object is predicted according to: 
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In addition, each landmark [ ]Ti
z

i
x

i llL ,=  is described by 

the following state transition equation: 
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where ),0(~ dQNw  and ),0(~ gQNv  are Gaussian random 

noises with zero mean and known covariances Qd and Qg. 
The matrix Qd is determined based on a certain covariance 
for the obstacle acceleration. The covariance Qg is estimated 
by considering that the obstacle geometry may gradually 
change over time. 

B. Motion Estimation 

To estimate the motion we perform a fast pairwise 
alignment of the extracted delimiters in the current frame to 
the existing individual trackers (represented by a set of 
landmarks). One of the most used approaches for aligning 
two point sets in a common coordinate system is the Iterative 
Closest Point (ICP) algorithm. First introduced by Besl and 
McKay [1] this method is typically used in scan matching 
approaches. A detailed description of our ICP-based motion 
estimation algorithm is given in [19]. The main idea is to find 

an optimal rotation R and translation T by minimizing the 
alignment error between the extracted delimiters and the 
associated object models. Additionally, this approach 
includes the stereo uncertainties by assigning a weight iw  to 

each point-to-point correspondence pair. We denote by 
P={p1,p2,..., pM} a model set that describes the target, and by 
Q={q1,q2, ..., qK} a data set containing the points of a 
measurement contour. Each point qj from Q is paired with the 
closest landmark pi from P.  Thus, our objective function can 
be defined as: 

 ∑
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In order to converge to a local minimum the following 
main steps are repeated: 

1. Matching: For each measurement point qi from Q the 
closest landmark point from P is found: 
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First, we define a region of interest that covers both the 
object model and the extracted delimiter 

objecttC . Then we 

compute a modified Distance Transform (see Fig. 4.c).  Each 
cell ),( dmdmdm zxm  from the distance map will be described 

by two values: a distance 2md  to the nearest delimiter point 

),( deldelj zxc  , and a position of the respective 

correspondence ),( deldel zx . The probability density map (see 

Fig. 4.d) can be determined now for each cell 
dmm  by 

converting the distance values according to: 
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where 
xσ  and 

zσ represent the stereo uncertainties of the 

corresponding measurement point.  If we consider that the 
stereo-vision system is rectified, then for each grid cell the 
depth error 

zσ  and the lateral error xσ  can be approximated 

as: 
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where x and z are the real world coordinates of a point, 

dσ represents the disparity error, b is the stereo system 

baseline and f denotes the focal length. In order to make use 
of information provided by the stereo uncertainties we assign 
a density value iw  to each corresponding pair ),( ii pq . 

2. Outliers Rejection:  Two strategies are used for 
filtering the erroneous correspondences: removing the pairs 
with a large point-to-point distance and rejecting many-to-
one correspondences.  

3. Error Minimization: In this step, an optimal rotation R 
and translation T are computed by minimizing the objective 
function described in (15). As equation (15) represents a 



  

least-square optimization problem, we estimated the unknown 
coefficients by setting the partial derivatives to zero and 
solving the resulted system of equation. 

4. Updating: The total transformation matrix Mg and the 
position of the model contour are updated with the computed 
R and T. 

5. Testing the convergence: Test if the algorithm has been 
achieved a minimum error by calculating the average point-
to-point alignment error according to: 
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The algorithm stops when the change in the error is below 
a given threshold or when a maximum iteration number is 
reached. 

C. State Update 

This step consists in updating the obstacle dynamic 
parameters tX  and its geometry tG . First, the new object 

position and speed are estimated by using the predicted state 
(13) and the new motion information computed in the 
previous step. Next, the geometry component tG is updated as 

follows: for each landmark we use an independent 2x2 

Kalman filter to estimate its state [ ]Ti
z

i
x

i llL ,ˆ =  and covariance 
i
L∑ . The new observations are generated by selecting N 

equidistant points along the extracted delimiter in the current 
frame. We use the same error model (18) to compute 
measurement covariance matrices for both object dynamics 

tX  and its geometry tG  (one covariance per landmark). 

VI.  EXPERIMENTAL RESULTS 

We tested our system in multiple urban traffic scenarios. 
The experiments were performed on an Intel Core 2 Duo 
E6750 CPU at 2.66GHz and 4GB of RAM. The elevation 
map used in our approach has a resolution of 240 x 500 cells. 

Fig. 5. illustrates how the obstacle geometry is inferred 
(green) after applying ICP-based motion estimation and 
landmark filtering. The model delimiter (extracted in the 
previous frame) is colored with red while the measurement 
delimiter (extracted in the current frame) is represented with 
blue.  

Fig. 6.  Shows, for an individual target, the estimated 
speeds with the proposed tracking approach.  

Fig. 7. presents some examples in real traffic situation 
(left) and the virtual view of the scene (right).  The object 
speed is encoded in the hue and saturation. The virtual scene 
shows how the obstacles are classified as static (green) and 
dynamic (red). 

The objects with a speed greater than 9km/h are 
considered dynamic. The processing time of our solution is 
dependent on the number of tracked obstacles and object 
landmarks. 

 
Figure 4.  a) A traffic scenario with the extracted object delimiters (green). 
b) The classified elevation grid (top view) and the projected obstacle 
delimiters.  c) The Distance Transform. d) The density map, generated for 
each object. High intensities means high measurement probability. 

 
Figure 5.  The obstacle geometry. Left: examples of traffic scenes. Right: 
The tracked object model (Top view). The model delimiters are colored  
with red. Current measurements are drawn with blue. The filtered geometry 
is represented with green color. 

 
Figure 6.  Estimated Speeds. Object tracking (blue) vs Measurements (red). 
The measurements are obtained using only the ICP-based motion 
estimation. 

 

 

 



  

 
Figure 7.  Multiple Object Tracking. Left: real traffic scenarios. Speeds are 
color encoded. Right: The virtual view of the scene with dynamic (red) and 
static (green) objects. The color hue describes the orientation of a moving 
obstacle, while the color saturation encodes its speed 

The average number of tracked obstacles in our experiments 
was 5. In addition, to describe each target we fixed the 
number of landmarks to 100. In these conditions the average 
running time required by the tracking algorithm was 61.45 ms 
per frame. In order to estimate the accuracy of our method we 
used a “follow the leader” scenario, consisting of a single 
moving target in front of the ego-car with known speed. The 
resulted mean absolute error (MAE) was 5.23Km/h. 

VII.  CONCLUSIONS 

In this paper we presented a real-time method for 
multiple-object tracking in unstructured environments. Our 
solution is based on information provided by a stereovision-
generated elevation map. We propose a recursive Bayesian 
approach for estimating both the obstacle dynamic 
parameters and its geometry. In order to compute the obstacle 
motion we apply an Iterative Closest Points-based alignment 
between the extracted delimiters and the associated trackers. 
Unlike the other existing techniques where objects are 
represented by fixed templates, we have adopted an approach 
in which we consider that the obstacle shape may gradually 
change over time. In our case, the object model is represented 
by a reference point and N delimiter landmarks (control 
points). For each target we apply a Kalman filter in order to 
track its position and speed. In addition, the object geometry 
is updated by using an independent 2x2 Kalman filter for 
each delimiter landmark. The proposed method works in real-
time and takes into consideration the stereo uncertainties. As 
future work we propose to improve the system accuracy by 
integrating measurements provided by other motion 
estimation techniques such as optical flow.  
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