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Abstract—Modeling and tracking of dynamic objects is a
challenging research problem in the field of drivirg assistance
systems. Typically, the environment to be tracked is
heterogeneous and unstructured. As a consequenchkettracking
system must deal with measurement uncertainties, oltisions or
deformable objects. In this paper we propose a redime object
tracking solution for dynamic unstructured environments. This
method relies on stereo vision-based 3D informationthat is
mapped into an intermediate digital elevation mapWe apply a
recursive Bayesian approach for estimating both theobstacle
dynamic parameters and its geometry. In order to capute the
obstacle motion we use an lIterative Closest Poinbased
registration technique that takes into consideratia the stereo
uncertainties. In our case, the object model is repsented by a
reference point andN delimiter landmarks. For each target we
apply a Kalman filter in order to track the obstacle position and
speed. In addition, the object geometry is updatedly using an
independent 2x2 Kalman filter for each delimiter landmark. The
proposed method works in real-time and takes into
consideration the stereo uncertainties.

I. INTRODUCTION

models [7], 2D boxes or 3D cuboids [2][6]. Usualthe
existing approaches work well in structured enwvinents,
where the obstacle’s geometry is known. Typicdhg, traffic
entities are represented by simplistic models suacsh
bounding boxes and the obstacle’s position is deted by
its center of mass. However it is difficult to usenstrained
models when the surrounding world is unstructur€te
target pose estimation may be affected by occlgsmmby
changes in its geometry and the tracking mechamiagnlead
to erroneous results. In order to overcome thisblern,
various algorithms for moving and deforming objeet®
proposed [16][17]. Most often, the model shape
represented implicitly [17], or by a set of fixedmber of
points. For example, the authors in [17] presemtaaking
solution for slowly deforming and moving contoutat are
represented implicitly. Isard and Blake [18] intuoe the
CONDENSATION algorithm for tracking parametric cass
In [23], the authors propose a real-time trackipgraach by
using level sets. Usually, the obstacle trackimipéques rely
on variants of Kalman filters [6], particle filtef46][18] or
hybrid solutions [2][20][21]. In [6], a Kalman fét is used to

Modeling and tracking of dynamic obstacles is affack objects that are modeled as cuboids. In §2Rao-

essential research topic in the field of drivingistance
systems. Usually, the tracking module relies omaegting a
set of key features from the scene and estimatieg state
over time. Existing research solutions use visi&i6],
ultrasound [4] or laser sensors [2][3]. Despite sivaplicity
of the main idea, the modeling and tracking of dyaamic
objects remains a challenging task. Typically,
environment to be tracked is heterogeneous anduatisted

Blackwellized Particle Filter is applied to estimaboth
dynamic and geometric properties of the tracked.cBor
simplicity the vehicle shape is approximated byeetangle.
The classical Kalman filter based estimators artalsie for
linear systems in which the posterior distributisrmodeled
by a Gaussian function. As an alternative, theigarfilter

th&®ased methods approximate the state space byeztomi of

N discrete samples. Their advantage is the alidithandle

and the tracking system must deal with measuremef@n-linear systems and multi-modal distributionswever,

uncertainties, occlusions, deformable objects q@redictable
behavior of the traffic entities. In such compléxiations, a
driving assistance system must be able to represehtrack
multiple obstacles in real-time, with high confiderand high
accuracy.

The motion estimation approaches can be applied
different representation levels. Some of the eggti
techniques imply directly tracking 3D point cloyé$, while
other solutions try to minimize the computationalstc by
using intermediate representations. The 3D infoonats
transformed into occupancy grids [13], octreesl@]] Stixel
maps [15], voxels [10] or digital elevation mapg][1Most
of the tracking methods use high level attributeshsas
object contours [11][12], difference fronts [8], lpgonal
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particle filters are not suitable for high-dimensb states as
their computational complexity tends to grow expuizly
with the number of state parameters.

The existing tracking methods also differ by theywlze
correct correspondences are computed. Direct sedching
approaches such as Iterative Closest Points (I@f@)itom
[1] are used for aligning new measurements to #istieg
models. However, in the case of laser-based systéms
object registration in subsequent scans is halztachieved
when the traffic objects or the ego-car moves gh lsipeeds
or when the measurement uncertainties are not taken
consideration.

In this paper we propose a real-time object tragkin
solution for dynamic unstructured environments. Gwthod
relies on stereo vision-based 3D information tlsamapped
into an intermediate digital elevation map. Theutesl grid

(e:mail0f €levations is used to perform the data associand to

extract a set of free-form object delimiters. Wepmse a
recursive Bayesian approach for estimating bothottetacle

is



dynamic parameters and its geometry. In order toptde

the obstacle motion we apply an Iterative Closesints-

based alignment between the extracted delimitets the

associated trackers. Unlike other solutions whéajeats are
represented by fixed templates, we have adoptegpproach
in which we consider that the obstacle shape maguzaily

change over time. In our case, the object modegsesented
by a reference point antll delimiter landmarks (control
points). For each target we apply a Kalman filteorder to
track the obstacle position and speed. In additiom,0bject
geometry is updated by using an independent 2x2nial
filter for each delimiter landmark. The proposed tmoe

works in real-time and takes into consideration #bereo
uncertainties.

The paper is structured as follows: the next sactio

presents the system architecture, the preprocessauyg is
described in chapter Ill, the object model is présé in
chapter IV while the proposed obstacle trackingatgm is
detailed in chapter V. The last two sections pregée
experimental results and conclude this work.

Il. SYSTEM OVERVIEW

The system architecture (see Fig. 1) comprisesafet
main components: Intermediate
Preprocessing and Tracking.

The first component acquires image pairs from the t
cameras. Next, stereo reconstruction is appliech vét
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Figure 1. System Overview

dedicated TYZX board [22]. The raw dense sterewhere Ocqa,) is true when a celly is occupied andalse

information is then used to compute an intermedialghen not. Similarly, a certain blob from the prexédrame is
classified grid [14]. Each grid cell is labeled &dson its yescribed as:

height value as: obstacle, traffic isle or roace(Bey. 2.b and
c).

B ={b |Ocab) =true,i = [L.N,]} )

The Preprocessing component performs a set of tasks e denote withO(a;, b, ) the overlap function between

prior to object tracking stage. In this step, thesutted
classified grid is used to assign new measuremente
existing trackers and to extract obstacle delirsiter

The Tracking level consists in estimating the optistate
parameters. For each existing individual
following processing steps are applied: predictiomgtion
estimation, updating the object dynamic paramejgusition
and speed) and updating the object geometry. Wedefil
each of these steps in the following sections.

The Preprocessing module performs a set of tasts tor
object tracking stage.

PREPROCESSING

A. Data Association

The data association step assigns new observatichs
existing targets. In our case we perform the dasmeiation
by computing overlapping scores between the ocayparid
blobs at consecutive time steps. We define a Bldh the
current frame as a collection of connected cellst thre
occupied:

A={a, |Ocda;) =true,i = [L.N,]} (1)

trackenge t

two points fromA and B. This function is 1 when the two
occupied cells overlap and O otherwise. For eaob frlom
the previous framé and each blob from the current fraBe
we compute an overlapping score:

Na Ng
W, =ANB=)>"0(a,b)) ©)
i=1 j=1
As the result, a score matriw/ ={w,} is formed. In
order to consider the cases when larger blobs @ieisto
many disjoint parts and vice versa, we define tases: the
most likely association fromA to B (forward association):

Asso¢A) = argmaxP(B| A) = argmax% 4
B B A

and the most likely association frol to A (backward
association):

©®)

Asso¢B) = argmaxP(A|B) = argmax%
A A Ng



b)

c)

Figure 2. a) Left camera image b) A virtual view with theuked grid of
elevations and the extracted delimiters. The geltk @re classified as road
(blue), obstacle (red) and traffic isle (yellow)) The elevation map is
projected on the ground plane. d) The top viewhef éxtracted delimiters.
The obstacle delimiters are represented with grebite the traffic isle
delimiters are colored with orange.

B. Extracting Object Delimiters

At each time step, the object delimiters are extiérom
the occupancy grid by using tiBorder Scannemalgorithm
that is described in [9]. The main idea of Berder Scanner
approach is to generate an object contayr. ., by selecting

the most visible object celfs. This is achieved by

considering a virtual ray which extends from theetvation
point and moves in a radial direction with fixeadriements.
At each step the closest occupied grid @dlqc, ) =true is

chosen as the delimiter point (see Fig. 2.d).

C _{Ci |OCC(Ci) = true,i O [:LM c]}

object —

(6)

V. OBJECTMODEL

In order to deal with deformable obstacles we agrsi
that the object shape may gradually change over tie to
factors such as the dynamic nature of the enviromnmoisy
measurements or occlusions.

In our solution, an object is described by thedwihg
parameters (see Fig. 3):

X

Figure 3. Object Model. An object is represented by a refeegnointPres,
and a set ol landmarksP'.

P! (x.,2, its relative position

L'(,.l}) to the reference poif_, (X, ,Z.):

I>I< - X::_Xref
llz zlc - Zref

In our case the coordinate system has its origfnoimt of
the ego-vehicle. Th& axis points to the right while th&
axis points towards the ego-car direction. Consigethe
notations above, at a tinh¢he obstacle state is defined as:

®)

) we also compute

()

— 111122 N NqT
S _[Xref'zref WV xy zJ x'I z’lx’lz ""’Ix 7|z ]

V. OBJECTTRACKING

From a Bayesian perspective, the tracking problem
consists in estimating the current object sgté&om a set of
noisy measuremen@,, ={Z,,Z,...,Z,} up to the time:

P(§ 12,,2,..2,) =np(Z, 1S)
[p(8182)p(S1120020) @
S
where /) represents a normalization constant. THg, | S)

term describes theneasurement modedt a timet and
A(S | S.,) denotes thetate transition modgmotion model)

fromS, t0o §.

In our approach, we split the obstacle stdténto two

* Alocal reference poirs denoting the obstacle position parts:

in the camera coordinate system. The referencet [®in
initially set to the object center of mass, and is

subsequently estimated by the tracking mechanism.

« The object speed vectat(v,,v,)

« A set of landmarks K ={P!(x,,z.)]i =[L.N.]}
specifying the object shape, and defining the vestiof a

polygonal line. Initially, the model landmarks (¢

points) are set by selectimgjequidistant points along the

object contour. Then, these landmarks are updateta
observations become available. For each landmark

S =[X.GI

where the first componernx, =[x

(10)

i+ Zes Vo V,]T denotes the
object position and speed while the component
G, =1L L1202, 1NN defines the obstacle geometry.
The overall posterior distributiop(X,,G, | Z,,) defined by

(9) is decomposed as:

p(xt’Gt |Zl't) = p(xt |Zl‘t) p(Gt | Xt’zl't)
The first distribution p(X,|Z,) describes the object

dynamic parameters, while the second tep(@, | X,,Z,,)
denotes the object geometry posterior conditiona o

(11)



Both terms are estimated analytically by using Kairfilters.
Therefore, we first estimate the obstacle positiod speed.

an optimal rotationrR and translationT by minimizing the
alignment error between the extracted delimiterd &me

Then, each landmark i@, being described by a mean valueassociated object models. Additionally, this apphoa

and a covariance matriq(j ,>1), is updated by using a 2x

Kalman filter. In the next sections we detail thaimsteps of
our tracking solution.

A. Prediction
This step predicts the current stee at timet given the
previous informationS_; and the motion model(S |S_,) -

First, based on the ego-car motion we extract @®oity
from the independent dynamics of the tracked objdatour
case, we obtain the vehicle speednd the yaw ratgy from

the car sensors. By following the ego-vehicle motmnodel
with constant yaw rate and constant speed, theebp@sition
(X » Zer ) IS transformed according to:

vat
{Xref_c} _ [cosw —singz/}{xref } )
Zee o sing  cosy | Z VAt siny
v
where At is the time delay between two frames agek (At

denotes the ego-vehicle rotation angle aroundrthgis. The
position and velocitX, =[x,z.,V,V,]" of each tracked

object is predicted according to:

Xret 1 0 At O | Xer ¢

Zref - 01 0 At Zref_c +wW (13)
Vv, 00 1 O v,

v, 00 0 1| v,

In addition, each landmark’ :[I‘X,liz]T is described by
the following state transition equation:

)l i)

(14)

wherew~ N (0,Q,) andv~N(0,Q,) are Gaussian random a

noises with zero mean and known covarian@gsand Q.

The matrixQq is determined based on a certain covariance z ™

for the obstacle acceleration. The covaria@gés estimated

2 includes the stereo uncertainties by assigningightvey, to

each point-to-point correspondence pair. We denmye
P={p.p....., pu} @ model set that describes the target, and by
Q={gq1,%, ..., } a data set containing the points of a
measurement contour. Each paipfrom Q is paired with the
closest landmark; from P. Thus, our objective function can
be defined as:

sRT=YwWRR+T-q)f (9

In order to converge to a local minimum the follogi
main steps are repeated:

1. Matching: For each measurement pomtfrom Q the
closest landmark point frof is found:

d(g,,P)= min d(q;,p;) (16)

First, we define a region of interest that coveothithe

object model and the extracted delimiiﬁgbjem. Then we

compute a modified Distance Transform (see Fig. 4kach
cell my.,(Xym Zgm) from the distance map will be described

by two values: a distancdrf] to the nearest delimiter point
C; (Xger Zoer) a position the respective
correspondencéx,,, z,.,) - The probability density map (see
Fig. 4.d) can be determined now for each cei| by
converting the distance values according to:

and of

1 _1 (de_xdel)z_',(de_zdel)2
2 2 2

- - oy o; (17)

2o .0,

Xz

where g, and g,represent the stereo uncertainties of the

corresponding measurement point. If we considat the
stereo-vision system is rectified, then for eacid gell the
depth errorg, and the lateral errogr, can be approximated

S:

=z (18)
b Of z

by considering that the obstacle geometry may gifdu where x and z are the real world coordinates of a point,

change over time.

B. Motion Estimation

o4 represents the disparity errob, is the stereo system

baseline and denotes the focal length. In order to make use
of information provided by the stereo uncertaintiessassign

To estimate the motion we perform a fast pairwise density valuew; to each corresponding pa , p,) -

alignment of the extracted delimiters in the cutreame to
the existing individual trackers (represented byset of
landmarks). One of the most used approaches fgniag
two point sets in a common coordinate system idtérative
Closest Point (ICP) algorithm. First introduced Bgsl and
McKay [1] this method is typically used in scan ofanbg
approaches. A detailed description of our ICP-basetion
estimation algorithm is given in [19]. The mainadis to find

2. Outliers Rejection Two strategies are used for
filtering the erroneous correspondences: removivgy dairs
with a large point-to-point distance and rejectimgny-to-
one correspondences.

3. Error Minimization:In this step, an optimal rotatid®

and translationl are computed by minimizing the objective
function described in (15). As equation (15) représ a



least-square optimization problem, we estimateditil@own
coefficients by setting the partial derivatives zero and
solving the resulted system of equation.

4. Updating: The total transformation matridy and the
position of the model contour are updated withabmputed
R andT.

5. Testing the convergenceest if the algorithm has been
achieved a minimum error by calculating the avenagimt-
to-point alignment error according to:

N
Derror = Z N
i=1 z Wk
k=1
The algorithm stops when the change in the errbeisw

a given threshold or when a maximum iteration numnibe
reached.

w; [d(q;, p;) (19)

C. State Update

This step consists in updating the obstacle dynam

parametersX, and its geometnyG, . First, the new object

position and speed are estimated by using the giestistate
(13) and the new motion information computed in th
previous step. Next, the geometry compor@yis updated as

follows: for each landmark we use an independer? 2
Kalman filter to estimate its stafe :[Iix,l 'Z]T and covariance

Y\ . The new observations are generated by seledting
equidistant points along the extracted delimitethie current

frame. We use the same error model (18) to compu

measurement covariance matrices for both objecamics
X, and its geometrys, (one covariance per landmark).

VI.

We tested our system in multiple urban traffic sces.
The experiments were performed on an Intel Coreud D
E6750 CPU at 2.66GHz and 4GB of RAM. The elevatio
map used in our approach has a resolution of Z@0xcells.

EXPERIMENTAL RESULTS

Fig. 5. illustrates how the obstacle geometry ferired
(green) after applying ICP-based motion estimatamd
landmark filtering. The model delimiter (extractéd the
previous frame) is colored with red while the meament
delimiter (extracted in the current frame) is resgrged with
blue.

Fig. 6. Shows, for an individual target, the estiad
speeds with the proposed tracking approach.

Fig. 7. presents some examples in real trafficatiim
(left) and the virtual view of the scene (rightY'he object
speed is encoded in the hue and saturation. Thealscene
shows how the obstacles are classified as statéeify and
dynamic (red).

The objects with a speed greater than 9km/h a
considered dynamic. The processing time of ourtewlus
dependent on the number of tracked obstacles afettob
landmarks.

X

d)

®igure 4. a) A traffic scenario with the extracted objectimhétiers (green).
b) The classified elevation grid (top view) and thmjected obstacle
delimiters. c¢) The Distance Transform. d) The dgn®map, generated for

Xach object. High intensities means high measureprebability.

Figure 5. The obstacle geometry. Left: examples of traffierss. Right:
The tracked object model (Top view). The model rdiéérs are colored
with red. Current measurements are drawn with blbe. filtered geometry
is represented with green color.
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Figure 6. Estimated Speeds. Object tracking (blue) vs Measemés (red).
The measurements are obtained using only the IGPebamotion
estimation.



Color Encoding
of Object Speed

'F

Figure 7. Multiple Object Tracking. Left: real traffic scenas. Speeds are
color encoded. Right: The virtual view of the scevith dynamic (red) and
static (green) objects. The color hue describesotlemtation of a moving
obstacle, while the color saturation encodes ikzdp

The average number of tracked obstacles in ourrempets
was 5. In addition, to describe each target wedfixee
number of landmarks to 100. In these conditionsatverage
running time required by the tracking algorithm w@ds45 ms
per frame. In order to estimate the accuracy ofneethod we
used a “follow the leader” scenario, consistingaogingle
moving target in front of the ego-car with knowresf. The
resulted mean absolute error (MAE) was 5.23Km/h.

VII. CONCLUSIONS
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In this paper we presented a real-time method for

multiple-object tracking in unstructured environrsenOur
solution is based on information provided by aextgision-
generated elevation map. We propose a recursivessay
approach for estimating both
parameters and its geometry. In order to comp@®histacle
motion we apply an Iterative Closest Points-badigphment
between the extracted delimiters and the assocteteters.

[16

the obstacle dynamig7]

Unlike the other existing techniques where objeats [l
represented by fixed templates, we have adoptegpproach
in which we consider that the obstacle shape maguglly [19]
change over time. In our case, the object modelpsesented
by a reference point antll delimiter landmarks (control
points). For each target we apply a Kalman filteorder to 20]
track its position and speed. In addition, the cbgeometry
is updated by using an independent 2x2 Kalmanr filbe
each delimiter landmark. The proposed method wiorksal-
time and takes into consideration the stereo uaicgies. As [21]
future work we propose to improve the system aayutzy
integrating measurements provided by other motion
estimation techniques such as optical flow. [22]
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