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Abstract—Modeling dynamic environments is an essential
research topic in any driving assistance system. The
complexity of the surrounding world, the measurement
uncertainties or the unpredictable behavior of the traffic
participants are the main factors that influence the detection
and tracking process. In this paper we present a vision-based
method for modeling and tracking unstructured dynamic
environments. The proposed solution relies on raw
information provided by a classified grid computed from a
digital elevation map and employs two separate representation
levels: a local dynamic persistence grid (DyPerGrid) that is
generated as an intermediate representation level and a map
of delimiters as a higher level obstacle description. A fast
tracking solution is proposed by using the two models. The
result is a geometrically consistent and accurate
representation of the dynamic environment.

I. INTRODUCTION

Modeling and tracking of dynamic environments is an
important research topic for autonomous driving
applications. The most of existing solutions consist in
extracting a set of relevant features from the raw
measurements that usually are acquired by laser [2][5],
ultrasound[3] or vision-based sensors [4]. Typically, the
dynamic properties of a moving entity are computed by
associating and filtering those features that describe the
same object over time. Despite the simplicity of the general
idea, the dynamic environment representation remains a
difficult problem. The complexity of the surrounding world,
the measurement uncertainties or the unpredictable
behavior of the traffic participants are the main factors that
influence the modeling and tracking process. Therefore a
driver assistance system should be able to address these
tasks with high accuracy and time efficiency. The motion
estimation approaches can be categorized by the type of
used features. Some of the existing methods imply tracking
of 3D point clouds [6], while other solutions are based on
using high level attributes including voxels [9] , 2D boxes,
3D cuboids [12], difference fronts [14], polygonal models
[13], or object contours [10][11]. Some of the existing
approaches rely on using the intensity information provided
by vision sensors [6]. Other solutions use only the object
geometry information such as in the case of laser-based
systems [2][9]. Many of the motion estimation techniques
try to minimize the processing power by using intermediate
representations as the input of the tracking step. The 3D
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information is transformed into occupancy grids [16],
octrees [3][9], Stixel World [7] or digital elevation maps
[15]. The tracking methods can also be separated into
model based and grid based techniques [3][16]. The model
based solutions are mostly used when the surrounding world
is considered to be structured [12] or when the type of the
tracked object is known [2]. However, in the case of
unstructured environments, it is difficult to hold constrained
models such as 2D boxes or 3D cuboids. A tracking
algorithm may fail when the object geometry changes or
when it is partially visible. Usually, the grid-based
algorithms perform the tracking process before generating a
model [16]. The occupancy grids is one of the most used
solutions for intermediate level modeling. An occupancy
grid represents a probabilistic map. Each map cell is
described by a probability of being occupied or empty. One
of the first occupancy grids representations was introduced
by [17] to represent static environments. Later, various
solutions were proposed to model dynamic grids
[13][16][18]. In [16], a dynamic environment tracking
method is proposed. A particle based occupancy grid is
presented. The complexity of the proposed solution is linear
with the grid size and with the total number of used
particles. Most often, the dynamic environment
representation is split into two separate tasks: simultaneous
localization and mapping (SLAM), and detection and
tracking of moving objects (DATMO) [13]. Usually, the
Iterative Closest Points (ICP) algorithm [19] is used for data
association in order to register the new measurement to the
local maps and to correct the vehicle odometry. The objects
that not fulfill the SLAM constraints are considered
dynamic. In some, cases when the environment is fully
dynamic, aligning entire maps at once may lead to
erroneous results.

In this paper we present a method for modeling and
tracking unstructured dynamic environments by using a
dense stereo-vision system. The proposed solution (see Fig.
1) is based on information provided by a digital elevation
map and employs two separate models:

e A Local Dynamic Persistence Grid (DyPerGrid):
represents a 2D grid that is updated using the raw
measurements, derived from the elevation map
processing. Each grid cell denotes the persistence
information (how often the cell has been detected as
occupied).

e A map of delimiters: the blob delimiters are extracted
from the DyPerGrid by considering only the cells with
high persistence.



The proposed tracking method is organized in three
main steps. The first step is performed at the blob level and
consists in associating the new measurements to the
existing DyPerGrid blobs. Also at this stage the object
delimiters are extracted from the DyPerGrid and from the
current measurements as well. At the second step, the
motion information is computed by using a pairwise
alignment of associated delimiters. A Kalman filter is
employed in order to obtain an optimal estimate of speed
vectors. The final step consists in updating the DyPerGrid
representation by taking into account both the velocity
vectors estimated in the previous stage and the new raw
measurements. An advantage of this Blob-Delimiter-Blob
approach is that it allows the extraction of more accurate
obstacle models from the DyPerGrid representation. At the
same time, fast motion estimation is achieved at a higher
level of representation. The extracted speeds are back
propagated to the blob level and are used to update the
DyPerGrid. As the result a geometrically consistent
representation of the dynamic environment is obtained.

The remainder of this paper is organized as follow: the
DyPerGrid representation is described in the next section.
Section III describes the delimiter model. The proposed
dynamic environment representation approach is detailed in
section IV. The experimental results and conclusions are
given in the last two sections.

II. THE DYNAMIC PERSISTENCE GRID (DYPERGRID) MODEL

The Dynamic Persistence Grid (DyPerGrid) model is
represented by a 2D grid, mapping the world into discrete
0.1 m x 0.1 m cells. The map used in this work has a
resolution of 240 rows x 500 columns (120000 cells).
Unlike the occupancy grids, a DyPerGrid model determines
how often a cell has been detected as occupied (the
persistence of an object in that position). A multi-frame
persistence map was proposed by [21] for curb detection
task. Temporal filtering was used to reduce the 3D noise
from dense stereo. However the proposed persistence map
was considered to be static. In our case, the dynamic part of
the world is also taken into a count. Thus each DyPerGrid
cell my, is described by its position (x,z), speed vectors
components (vx,vz) and a persistence value p,.:

m, =(x,2,vx,vz,p,.) (1)

At each frame, the DyPerGrid is updated iteratively with
the measurements received from a binary occupancy grid
that is derived from the elevation map [1] projection on the
horizontal plane. Each cell ¢;j in the measurement grid is
described by its position (i,j) and an occupancy value
Occ(i,j):

¢; =, J,0cc(i, j)) )

The Occ(i,j) is 1 when c¢;; is occupied and O otherwise.
As in the case of reflection probability maps [20] the
DyPerGrid map can be learned by using a so called
counting model. According to this model, our goal is to
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Figure 2. The persistence value converges to 0 once an occupied cell c;
becomes empty. The memory effect is shown in (a) in the case when all the
past observations are taken into account (the object state changes more slowly
when N increases). The persistence value is calculated in (b) by using a
moving average with a fixed sliding window of size N,,=3.

compute the most likely map m” knowing the measurements
¢1+ and ego-car poses E; .,

m" =argmax p(mlE,,,c,,) 3

By following the description in [20] and assuming that

all cells m,, are independent, the persistence value p,, of
each cell m,, can be computed according to:

N
= occ (4)
Pe=N 4N

occ free

where N, is the number of times the cell has been detected
as occupied, and Np.,, is the number of times the cell has
been detected as free. The persistence of a DyPerGrid cell
m,, can also be updated recursively from the previous value

p;' and the current occupancy Occ(x,z) of the
measurement cell:
t-1
N +Occ(x,
pl, =P 2) )

N+1



%

Figure 3. Bottom-left: The raw occupancy grid. Occupied cells are described
with black color. Bottom-right: The updated DyPerGrid. High intensities
indicates high persistence of cells.

where N=N

occ

+N free is the total number of observations

up to the time #-1.

One of the problems in the case of the updating policy
described by (4) and (5) is that an object state changes very
slowly when N is large (see Fig. 2). Therefore it cannot be
applied for moving obstacles that are observed only for a
short time. A possible solution is to use a subset with only
the most recent N, measurements (sliding window) and
analyze the observations inside that subset. At each time,
this subset is modified by including the new observation and
excluding the oldest one. Additionally, weighting factors
can be applied to each window element in order to
emphasize particular observations in the subset. The
persistence value can be calculated by using a moving
average technique such as weighted moving average
(WMA) or exponential moving average (EMA). In our
proposed solution the measurement update step is
performed by using a modified moving average (MMA).
Fig. 3 illustrates an example with the raw occupancy grid
and the corresponding DyPerGrid model for an urban scene.
However, before updating the DyPerGrid model, we must
take into account both the ego-vehicle movement and the
motion of the other dynamic entities in the traffic scene.
This is described later in this paper.

III. OBJECT DELIMITER MODEL

An object delimiter is defined by a set of contour points
describing the object blobs. At each frame a map of
delimiters is extracted from the DyPerGrid and another map
is extracted from the measurement grid. The applied
approach is similar in both cases. For this, we use the

BorderScanner algorithm, described in one of our previous
works [22]. The main idea of the BorderScanner method is
to generate a better free-form obstacle model by selecting
the most visible parts of the objects. This is achieved by
using a scanning ray which extends from the ego-car
position and moves in a radial direction with fixed
increments. At each step the closest point that satisfies the
selection criterion is chosen as the contour point. For each
of the two models (DyPerGrid and measurement grid),
different criteria are considered. For the measurement grid,
the first occupied point /; is taken into account. An extracted
contour of M elements is defined as:

L ={l.10cc(l)=1,ie[1.M]} (©6)

measuremert

In the case of the DyPerGrid the delimiter points are
extracted by selecting the closest cells /; that have the
persistence value p; greater than a given threshold 7 . Thus,
a DyPerGrid delimiter can be described as:

Lyppooa =3, 10, >7, je[1.N1} )

In our experiments, for a sliding window of N,=3, we
used a persistence threshold of 7 =0.5. Fig. 4 shows an
example of delimiter extraction from the DyPerGrid model.

Figure 4. The delimiter extraction. Top — a traffic scene. Bottom — a part of
the DyPerGrid model including the extracted delimiters (green) for the cars in
the top image.

1V. THE BLOB-DELIMITER-BLOB METHOD FOR OBJECT
MOTION ESTIMATION

The proposed dynamic environment representation
method could be divided into three main phases:

A. Blobs Association

The first step is performed at the blob level and consists
in associating the new measurements to the existing
DyPerGrid blobs. Before performing the data association,
the DyPerGrid coordinate system (previous frame) must be
aligned with the measurement one (current frame) in order
to compensate the ego-vehicle motion. In our case the
vehicle speed v and the yaw rate i are obtained from the

car sensors through the CAN bus. We also know the time



delay Ar between two frames. These parameters are used to
estimate the rotation R (y) and translation 7 =[¢ ¢ ]" of
the car. By following fhe ego-vehicle motion model with
constant yaw rate and constant speed, thet , ¢, and y are
estimated as:

‘, :ﬂ(l—cosl//), t =£Atsinl// and v = yAr ®)
4 4

In order to compensate the ego-motion, each DyPerGrid
cell m(x,_,,z, ,)is transformed according to:

M el
< A Zp tz

Our next objective is to find blobs that identify the same
obstacle in the DyPerGrid and the measurement map. We
define a DyPerGrid blob as a finite collection of connected
cells that have the persistence value greater than a given
threshold 7 :

A=l{a,1p, >7,i=[1.N,]} (10)

Similarly, a certain blob from the measurement grid is
described by a set of connected cells that are occupied:

B={b,10cc(b;)=1,j=[1..N,]1} (11)

We denote with O(Qi,bj ) the overlap function between

two given points from A and B. This function is 1 when the
two cells overlap and O otherwise. For each blob from the
DyPerGrid and for each blob from the measurement grid we
calculate an overlapping score:

NA NB
wy =ANB=Y>"0(a,b,) (12)
i=l j=1
It must be noted that and

Wap=Wpa
O(a;,b;)=0(b;,a,)- As the result, a score matrix is
computed: W ={w,}- Subsequently, we define the most

likely association from A to B (forward association) as:

Assoc(A) = argmax P(B| A) = argmaxM (13)
B B

A
and the most likely association from B to A (backward
association):
Assoc(B) = argmax P(A| B) = argmaxM (14)
A A B
This double association allows us to consider the cases

when larger blobs are split into many disjoint sets or vice
versa.

Having the two collections of blobs described as
S,={A/lie[l.M]}andS, ={B, | je[1.N]}, the result

collection S of distinct associated pairs is given by:

S={(A;,B;)| Assoc(A;)=B,,ie[l.M], je [l.N]}u
{(B;,A;)| Assoc(B;) = A,, Assoc(A;) <> B,,ie [l.M], je [l.N]}

Finally, the data association information is passed to the
delimiter level in order to identify a set of associated
contour pairs, so that the selected candidates are used for
estimating the motion of objects in the traffic scene.

B. Delimiter-based motion estimation

At the second step, the speed vectors of the traffic
participants are computed by using a fast pairwise
alignment of the associated object delimiters. One of the
most used techniques for registering two point sets in a
common coordinate system is the Iterative Closest Point
(ICP) algorithm. The ICP method was first proposed by
Besl and McKay [19] and is widely used especially for scan
matching approaches. Previously, the ICP algorithm was
used by us in [8] to align objects considering only the
previous and current frames. In this work we adapt the
alignment method by using the contours extracted from the
DyPerGrid and from the measurement grid as the input for
the ICP phase. The main idea is to find an optimal rotation
R and translation 7 by minimizing the alignment error
between the two associated delimiters.

We denote by P={p,,p.,..., pu} a model set that describes
the DyPerGrid delimiter, and by O={q,,q>, ..., qx} a data set
containing the points of a measurement contour. Each point
g; from Q is paired with the closest point p; from P. Thus,
our objective function can be defined as:

e(R.T)= ﬁ:HRpi +T-q| (15)
i=1

In order to converge to a local minimum the following
main steps are repeated:

1. Matching. For each data point g; from Q the closest
model point from P is found:
- mi 16
d(q;,P)= min d(q;.p;) (16)
In our case the closest corresponding points are
determined by using a distance transform map.

2. Outliers Rejection. Two strategies are used for filtering
the erroneous correspondences: removing the pairs with a
large point-to-point distance and rejecting many-to-one
correspondences.

3. Error Minimization. In this step, an optimal rotation R
and translation 7T is computed by minimizing the objective
function described by the relation (15). As equation (15) is a
least-square optimization problem, we estimated the
unknown coefficients by setting the partial derivatives to
zero and solving the resulted system of equation.

4. Updating. This step consists in updating the final
transformation matrix M, and the position of the model
contour with the estimated R and 7.



5. Testing the convergence. Test if the algorithm has been
achieved a minimum error by calculating the average point-
to-point distance between the two corresponding sets:

7

1 N
810P=N§ Hpi_qi
=

The algorithm stops when the change in the error is
below a given threshold or when a maximum iteration
number is reached.

In order to obtain an optimal estimate of speed vectors, a
standard Kalman filter is used. For each object we track its
position and the two speed components x =(x,,z,,v,,v.)" -

In our case the process covariance matrix Q is determined
by taking into account the obstacle’s acceleration while the
measurement covariance matrix R is estimated by following
the uncertainty model described in [16].

C. DyPerGrid update

This stage consists in a motion update followed by a
measurement update of the DyPerGrid.

As the result of the delimiter alignment, each DyPerGrid
blob is described by a rotation R(a), a translation

T =[t,t,] and a speed vector v =[v_,v_]". In the motion
update step, the position of each cell m(x,z)is modified
according to the estimated R(¢&) and T:

x| |cosa —sina|x| |t
7| |sine coser ||z| |t
In the measurement update step the persistence of each

DyPerGrid cell m(x,z) is updated recursively from its
and the

(18)

previous persistence value p current

-1
measurement Occ(x,z). Unlike the classical update policy
described by the equations (4) and (5) we use a modified
moving average (MMA) technique with a fixed sliding
window of size N,,:

ro_ PZI (N, =D +0cc(x,z)
XZ N

w

19)

Fig. 5.b shows an example with the evolution in time of
cell persistence, given a sequence of measurements. The
MMA method with different sliding window sizes N,, is
compared.

V. EXPERIMENTAL RESULTS

The proposed dynamic environment modeling solution
has been tested on various urban traffic scenarios including
cross traffic and occluded obstacles. For our experiments we
used a computer equipped with an Intel Core 2 Duo CPU
and 2.66GHz with 2GB of RAM. For the processing steps
we used rectified and down-sampled images with 512 pixel
width.

Fig. 5.c and Fig. 5.d show the difference between a static
grid representation and our proposed DyPerGrid solution
for dynamic environments representation. In Fig. 6, the
dynamic obstacles are described by attributed polygonal
models. Different traffic scenarios are tested including:
approaching (yellow) and outgoing (blue) vehicles (see Fig.
6.b), occluded obstacles with different orientation (see Fig.
6. ¢), crossing vehicles (Fig. 6.d).

Qualitative results from various traffic scenes are shown in
the Fig. 6. The orientation of a moving obstacle is described
by the color hue, while its speed is given by the saturation
(white color means a static object).

——Nw=2 Nw=3

——Nw=4

d)

Figure 5. a) An urban traffic scene. b) The evolution in time of a cell
persistence, given a sequence of measurements. The MMA method with
different sliding window sizes N,, is compared. c¢) The resulted representation
for the scene (a) in the case of Static Grid asumption (without motion update).
d) A more consistent model is obtained in the case of DyPerGrid
representation and Blob-Line-Blob motion estimation approach.

c)

|
Color Encoding of

Object Speeds

Figure 6. Different urban traffic scenarios with dynamic obstacles. The
object speed vectors are color encoded as shown in top-left image. The hue is
used for orientation while the saturation is for object speed (white means a
static obstacle).



For the numerical evaluation we have included two
cases. In both tests the proposed blob-delimiter-blob
approach was compared with a solution that uses a particle
based filtering mechanism [16]. The first case consists in a
“follow the leader” scenario with a moving car in front of
the ego vehicle. The ego-car speed represents the ground
truth. The mean absolute error (MAE) is chosen as the
accuracy metric. The resulted accuracy of the delimiter-
based tracking solution (2.81 Km/h) is comparable to the
particle filtering method (1.29 Km/h). However, our
proposed method proves to be much faster (16.08 ms) than
the particle based filtering approach (119.1 ms). The second
test implies an incoming vehicle crossing an intersection.
The speed estimation values are shown in the Fig. 7. The
moving vehicle is in the field of view for only 2.5 seconds.
It can be observed that the blob-delimiter-blob solution
converges more quickly to the real speed of the car.

DyPerGrid speed vs PF Speed

300 305 310 315 320 325 330
—+—DyPerGrid Speed PF Speed

Figure 7. A comparison between the extracted speeds by using a delimiter
based motion estimation (blue) and a particle-based occupancy grid (green).

VI. CONCLUSIONS

In this paper we presented a vision-based solution for
modeling dynamic unstructured. The proposed method is
based on information provided by a classified occupancy
grid computed from a digital elevation map. Two separate
representation levels are employed: a Local Dynamic
Persistence Grid (DyPerGrid) and a map of delimiters. The
tracking method is organized in three main steps. The first
step is performed at the blob level and consists in
associating the new measurements to the existing
DyPerGrid blobs. At this stage the object delimiters are
extracted from the DyPerGrid and from the current
measurements as well. At the second step, the motion
information is computed by using a pairwise alignment of
associated delimiters. A Kalman filter is employed in order
to obtain an optimal estimate of speed vectors. The final
step consists in updating the DyPerGrid representation by
taking into account both the extracted object speeds and the
new measurements. The proposed method is described by a
low processing-time and an accuracy that is comparable to
the other complex tracking approaches.
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