
  

  

Abstract—Modeling dynamic environments is an essential 

research topic in any driving assistance system. The 

complexity of the surrounding world, the measurement 

uncertainties or the unpredictable behavior of the traffic 

participants are the main factors that influence the detection 

and tracking process. In this paper we present a vision-based 

method for modeling and tracking unstructured dynamic 

environments. The proposed solution relies on raw 

information provided by a classified grid computed from a 

digital elevation map and employs two separate representation 

levels: a local dynamic persistence grid (DyPerGrid) that is 

generated as an intermediate representation level and a map 

of delimiters as a higher level obstacle description. A fast 

tracking solution is proposed by using the two models. The 

result is a geometrically consistent and accurate 

representation of the dynamic environment. 

I. INTRODUCTION 

Modeling and tracking of dynamic environments is an 

important research topic for autonomous driving 

applications. The most of existing solutions consist in 

extracting a set of relevant features from the raw 

measurements that usually are acquired by laser [2][5], 

ultrasound[3] or vision-based sensors [4]. Typically, the 

dynamic properties of a moving entity are computed by 

associating and filtering those features that describe the 

same object over time. Despite the simplicity of the general 

idea, the dynamic environment representation remains a 

difficult problem. The complexity of the surrounding world, 

the measurement uncertainties or the unpredictable 

behavior of the traffic participants are the main factors that 

influence the modeling and tracking process. Therefore a 

driver assistance system should be able to address these 

tasks with high accuracy and time efficiency. The motion 

estimation approaches can be categorized by the type of 

used features. Some of the existing methods imply tracking 

of 3D point clouds [6], while other solutions are based on 

using high level attributes including voxels [9] , 2D boxes, 

3D cuboids [12], difference fronts [14], polygonal models 

[13], or object contours [10][11]. Some of the existing 

approaches rely on using the intensity information provided 

by vision sensors [6]. Other solutions use only the object 

geometry information such as in the case of laser-based 

systems [2][9]. Many of the motion estimation techniques 

try to minimize the processing power by using intermediate 

representations as the input of the tracking step.  The 3D 
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information is transformed into occupancy grids [16], 

octrees [3][9], Stixel World [7] or digital elevation maps 

[15]. The tracking methods can also be separated into 

model based and grid based techniques [3][16]. The model 

based solutions are mostly used when the surrounding world 

is considered to be structured [12] or when the type of the 

tracked object is known [2]. However, in the case of 

unstructured environments, it is difficult to hold constrained 

models such as 2D boxes or 3D cuboids. A tracking 

algorithm may fail when the object geometry changes or 

when it is partially visible. Usually, the grid-based 

algorithms perform the tracking process before generating a 

model [16]. The occupancy grids is one of the most used 

solutions for intermediate level modeling. An occupancy 

grid represents a probabilistic map. Each map cell is 

described by a probability of being occupied or empty. One 

of the first occupancy grids representations was introduced 

by [17] to represent static environments. Later, various 

solutions were proposed to model dynamic grids 

[13][16][18]. In [16], a dynamic environment tracking 

method is proposed. A particle based occupancy grid is 

presented. The complexity of the proposed solution is linear 

with the grid size and with the total number of used 

particles. Most often, the dynamic environment 

representation is split into two separate tasks: simultaneous 

localization and mapping (SLAM), and detection and 

tracking of moving objects (DATMO) [13]. Usually, the 

Iterative Closest Points (ICP) algorithm [19] is used for data 

association in order to register the new measurement to the 

local maps and to correct the vehicle odometry. The objects 

that not fulfill the SLAM constraints are considered 

dynamic. In some, cases when the environment is fully 

dynamic, aligning entire maps at once may lead to 

erroneous results.  

In this paper we present a method for modeling and 

tracking unstructured dynamic environments by using a 

dense stereo-vision system. The proposed solution (see Fig. 

1) is based on information provided by a digital elevation 

map and employs two separate models: 

• A Local Dynamic Persistence Grid (DyPerGrid): 

represents a 2D grid that is updated using the raw 

measurements, derived from the elevation map 

processing. Each grid cell denotes the persistence 

information (how often the cell has been detected as 

occupied). 

• A map of delimiters: the blob delimiters are extracted 

from the DyPerGrid by considering only the cells with 

high persistence.  
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The proposed tracking method is organized in three 

main steps. The first step is performed at the blob level and 

consists in associating the new measurements to the 

existing DyPerGrid blobs. Also at this stage the object 

delimiters are extracted from the DyPerGrid and from the 

current measurements as well. At the second step, the 

motion information is computed by using a pairwise 

alignment of associated delimiters. A Kalman filter is 

employed in order to obtain an optimal estimate of speed 

vectors. The final step consists in updating the DyPerGrid 

representation by taking into account both the velocity 

vectors estimated in the previous stage and the new raw 

measurements. An advantage of this Blob-Delimiter-Blob 

approach is that it allows the extraction of more accurate 

obstacle models from the DyPerGrid representation. At the 

same time, fast motion estimation is achieved at a higher 

level of representation. The extracted speeds are back 

propagated to the blob level and are used to update the 

DyPerGrid. As the result a geometrically consistent 

representation of the dynamic environment is obtained. 

The remainder of this paper is organized as follow: the 

DyPerGrid representation is described in the next section. 

Section III describes the delimiter model. The proposed 

dynamic environment representation approach is detailed in 

section IV. The experimental results and conclusions are 

given in the last two sections. 

II. THE DYNAMIC PERSISTENCE GRID (DYPERGRID) MODEL 

The Dynamic Persistence Grid (DyPerGrid) model is 

represented by a 2D grid, mapping the world into discrete 

0.1 m x 0.1 m cells. The map used in this work has a 

resolution of 240 rows x 500 columns (120000 cells). 

Unlike the occupancy grids, a DyPerGrid model determines 

how often a cell has been detected as occupied (the 

persistence of an object in that position). A multi-frame 

persistence map was proposed by [21] for curb detection 

task. Temporal filtering was used to reduce the 3D noise 

from dense stereo. However the proposed persistence map 

was considered to be static. In our case, the dynamic part of 

the world is also taken into a count. Thus each DyPerGrid 

cell mxz is described by its position (x,z), speed vectors 

components (vx,vz) and a persistence value pxz: 

 ),,,,( xzxz pvzvxzxm =  (1) 

At each frame, the DyPerGrid is updated iteratively with 

the measurements received from a binary occupancy grid 

that is derived from the elevation map [1] projection on the 

horizontal plane. Each cell cij in the measurement grid is 

described by its position (i,j) and an occupancy value 

Occ(i,j): 

 )),(,,( jiOccjicij =  (2) 

The Occ(i,j) is 1 when cij is occupied and 0 otherwise. 

As in the case of reflection probability maps [20] the 

DyPerGrid map can be learned by using a so called 

counting model. According to this model, our goal is to  

 
Figure 1.  Dynamic Environment Modeling method overview. 

 

Figure 2.  The persistence value converges to 0 once an occupied cell cij 

becomes empty. The memory effect is shown in (a) in the case when all the 

past observations are taken into account (the object state changes more slowly 

when N increases). The persistence value is calculated in (b) by using a 

moving average with a fixed sliding window of size Nw=3. 

compute the most likely map m* knowing the measurements 

c1:t  and ego-car poses E1:t : 
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By following the description in [20] and assuming that 

all cells mxz are independent, the persistence value pxz of 

each cell mxz can be computed according to: 
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where Nocc is the number of times the cell has been detected 

as occupied, and Nfree is the number of times the cell has 

been detected as free. The persistence of a DyPerGrid cell 

mxz can also be updated recursively from the previous value 
1−t

xzp  and the current occupancy ),( zxOcc  of the 

measurement cell: 

 
1

),(
1

+

+
=

−

N

zxOccNp
p

t

xzt

xz
 (5) 

 

 

 



  

 
Figure 3.  Bottom-left: The raw occupancy grid. Occupied cells are described 

with black color. Bottom-right: The updated DyPerGrid. High intensities 

indicates high persistence of cells. 

where 
freeocc NNN +=  is the total number of observations 

up to the time t-1. 

One of the problems in the case of the updating policy 

described by (4) and (5) is that an object state changes very 

slowly when N is large (see Fig. 2). Therefore it cannot be 

applied for moving obstacles that are observed only for a 

short time. A possible solution is to use a subset with only 

the most recent Nw measurements (sliding window) and 

analyze the observations inside that subset. At each time, 

this subset is modified by including the new observation and 

excluding the oldest one. Additionally, weighting factors 

can be applied to each window element in order to 

emphasize particular observations in the subset. The 

persistence value can be calculated by using a moving 

average technique such as weighted moving average 

(WMA) or exponential moving average (EMA). In our 

proposed solution the measurement update step is 

performed by using a modified moving average (MMA). 

Fig. 3 illustrates an example with the raw occupancy grid 

and the corresponding DyPerGrid model for an urban scene. 

However, before updating the DyPerGrid model, we must 

take into account both the ego-vehicle movement and the 

motion of the other dynamic entities in the traffic scene. 

This is described later in this paper. 

III. OBJECT DELIMITER MODEL 

An object delimiter is defined by a set of contour points 

describing the object blobs. At each frame a map of 

delimiters is extracted from the DyPerGrid and another map 

is extracted from the measurement grid. The applied 

approach is similar in both cases. For this, we use the 

BorderScanner algorithm, described in one of our previous 

works [22]. The main idea of the BorderScanner method is 

to generate a better free-form obstacle model by selecting 

the most visible parts of the objects. This is achieved by 

using a scanning ray which extends from the ego-car 

position and moves in a radial direction with fixed 

increments. At each step the closest point that satisfies the 

selection criterion is chosen as the contour point. For each 

of the two models (DyPerGrid and measurement grid), 

different criteria are considered. For the measurement grid, 

the first occupied point li is taken into account. An extracted 

contour of M elements is defined as: 

 { }]..1[,1)(| MilOcclL iitmeasuremen ∈==  (6) 

In the case of the DyPerGrid the delimiter points are 

extracted by selecting the closest cells lj that have the 

persistence value pj greater than a given thresholdτ . Thus, 

a DyPerGrid delimiter can be described as: 

 { }]..1[,| NjplL jjDyPerGrid ∈>= τ  (7) 

In our experiments, for a sliding window of Nw=3, we 

used a persistence threshold of 5.0=τ . Fig. 4 shows an 

example of delimiter extraction from the DyPerGrid model. 

 
Figure 4.  The delimiter extraction. Top – a traffic scene. Bottom – a part of 

the DyPerGrid model including the extracted delimiters (green) for the cars in 

the top image. 

IV. THE BLOB-DELIMITER-BLOB METHOD FOR OBJECT  

MOTION ESTIMATION 

The proposed dynamic environment representation 
method could be divided into three main phases: 

A.  Blobs Association 

The first step is performed at the blob level and consists 
in associating the new measurements to the existing 
DyPerGrid blobs. Before performing the data association, 
the DyPerGrid coordinate system (previous frame) must be 
aligned with the measurement one (current frame) in order 
to compensate the ego-vehicle motion. In our case the 

vehicle speed v and the yaw rate ψ&  are obtained from the 

car sensors through the CAN bus. We also know the time 

 

 



  

delay t∆  between two frames. These parameters are used to 

estimate the rotation ( )ψyR  and translation T

zx ttT ],[= of 

the car. By following the ego-vehicle motion model with 

constant yaw rate and constant speed, the
xt , 

zt  and ψ  are 

estimated as: 

 )cos1( ψ
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In order to compensate the ego-motion, each DyPerGrid 

cell ),( 11 −− tt zxm is transformed according to: 
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Our next objective is to find blobs that identify the same 
obstacle in the DyPerGrid and the measurement map. We 
define a DyPerGrid blob as a finite collection of connected 
cells that have the persistence value greater than a given 

thresholdτ : 

 ]}..1[,|{ Aii NipaA =>= τ  (10) 

Similarly, a certain blob from the measurement grid is 
described by a set of connected cells that are occupied: 

 ]}..1[,1)(|{ Bjj NjbOccbB ===  (11) 

We denote with ),( ji baO the overlap function between 

two given points from A and B. This function is 1 when the 
two cells overlap and 0 otherwise. For each blob from the 
DyPerGrid and for each blob from the measurement grid we 
calculate an overlapping score: 
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It must be noted that 
ABw =

BAw , and 

),(),( ijji abObaO = . As the result, a score matrix is 

computed: }{ ijwW = . Subsequently, we define the most 

likely association from A to B (forward association) as: 
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and the most likely association from B to A (backward 

association): 
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This double association allows us to consider the cases 

when larger blobs are split into many disjoint sets or vice 

versa. 

Having the two collections of blobs described as 

]}..1[|{ MiAS iA ∈= and ]}..1[|{ NjBS jB ∈= , the result 

collection S of distinct associated pairs is given by: 
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Finally, the data association information is passed to the 

delimiter level in order to identify a set of associated 

contour pairs, so that the selected candidates are used for 

estimating the motion of objects in the traffic scene. 

B.  Delimiter-based motion estimation 

At the second step, the speed vectors of the traffic 

participants are computed by using a fast pairwise 

alignment of the associated object delimiters. One of the 

most used techniques for registering two point sets in a 

common coordinate system is the Iterative Closest Point 

(ICP) algorithm. The ICP method was first proposed by 

Besl and McKay [19] and is widely used especially for scan 

matching approaches. Previously, the ICP algorithm was 

used by us in [8] to align objects considering only the 

previous and current frames. In this work we adapt the 

alignment method by using the contours extracted from the 

DyPerGrid and from the measurement grid as the input for 

the ICP phase. The main idea is to find an optimal rotation 

R and translation T by minimizing the alignment error 

between the two associated delimiters.  

We denote by P={p1,p2,..., pM} a model set that describes 

the DyPerGrid delimiter, and by Q={q1,q2, ..., qK} a data set 

containing the points of a measurement contour. Each point 

qj from Q is paired with the closest point pi from P.  Thus, 

our objective function can be defined as: 

 ∑
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In order to converge to a local minimum the following 

main steps are repeated: 

1. Matching. For each data point qi from Q the closest 

model point from P is found:  
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 In our case the closest corresponding points are 

determined by using a distance transform map. 

2. Outliers Rejection.  Two strategies are used for filtering 

the erroneous correspondences: removing the pairs with a 

large point-to-point distance and rejecting many-to-one 

correspondences.  

3. Error Minimization. In this step, an optimal rotation R 

and translation T is computed by minimizing the objective 

function described by the relation (15). As equation (15) is a 

least-square optimization problem, we estimated the 

unknown coefficients by setting the partial derivatives to 

zero and solving the resulted system of equation. 

4. Updating. This step consists in updating the final 

transformation matrix Mg and the position of the model 

contour with the estimated R and T. 



  

5. Testing the convergence. Test if the algorithm has been 

achieved a minimum error by calculating the average point-

to-point distance between the two corresponding sets: 

 ∑
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The algorithm stops when the change in the error is 

below a given threshold or when a maximum iteration 

number is reached.  

In order to obtain an optimal estimate of speed vectors, a 

standard Kalman filter is used. For each object we track its 

position and the two speed components T

zxoo vvzxx ),,,(= . 

In our case the process covariance matrix Q is determined 

by taking into account the obstacle’s acceleration while the 

measurement covariance matrix R is estimated by following 

the uncertainty model described in [16]. 

C. DyPerGrid update 

This stage consists in a motion update followed by a 

measurement update of the DyPerGrid.  

As the result of the delimiter alignment, each DyPerGrid 

blob is described by a rotation )(αR , a translation 
T

zx ttT ],[= and a speed vector T

zx vvv ],[=
r

. In the motion 

update step, the position of each cell ),( zxm is modified 

according to the estimated )(αR  and T: 
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In the measurement update step the persistence of each 

DyPerGrid cell ),( zxm  is updated recursively from its 

previous persistence value 1−t

xz
p  and the current 

measurement ),( zxOcc . Unlike the classical update policy 

described by the equations (4) and (5) we use a modified 

moving average (MMA) technique with a fixed sliding 

window of size Nw: 
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Fig. 5.b shows an example with the evolution in time of 

cell persistence, given a sequence of measurements. The 

MMA method with different sliding window sizes Nw is 

compared. 

V. EXPERIMENTAL RESULTS 

The proposed dynamic environment modeling solution 

has been tested on various urban traffic scenarios including 

cross traffic and occluded obstacles. For our experiments we 

used a computer equipped with an Intel Core 2 Duo CPU 

and 2.66GHz with 2GB of RAM. For the processing steps 

we used rectified and down-sampled images with 512 pixel 

width. 

Fig. 5.c and Fig. 5.d show the difference between a static 

grid representation and our proposed DyPerGrid solution 

for dynamic environments representation. In Fig. 6, the 

dynamic obstacles are described by attributed polygonal 

models. Different traffic scenarios are tested including: 

approaching (yellow) and outgoing (blue) vehicles (see Fig. 

6.b), occluded obstacles with different orientation (see Fig. 

6. c), crossing vehicles (Fig. 6.d).  

Qualitative results from various traffic scenes are shown in 

the Fig. 6. The orientation of a moving obstacle is described 

by the color hue, while its speed is given by the saturation 

(white color means a static object).  

 
Figure 5.  a) An urban traffic scene. b) The evolution in time of a cell 

persistence, given a sequence of measurements. The MMA method with 

different sliding window sizes Nw is compared. c) The resulted representation 

for the scene (a)  in the case of Static Grid asumption (without motion update). 

d) A more consistent model is obtained in the case of DyPerGrid 

representation and Blob-Line-Blob motion estimation approach. 

 
Figure 6.  Different urban traffic scenarios with dynamic obstacles. The 

object speed vectors are color encoded as shown in top-left image. The hue is 

used for orientation while the saturation is for object speed (white means a 

static obstacle). 

 

 

 



  

For the numerical evaluation we have included two 

cases. In both tests the proposed blob-delimiter-blob 

approach was compared with a solution that uses a particle 

based filtering mechanism [16]. The first case consists in a 

“follow the leader” scenario with a moving car in front of 

the ego vehicle. The ego-car speed represents the ground 

truth. The mean absolute error (MAE) is chosen as the 

accuracy metric. The resulted accuracy of the delimiter-

based tracking solution (2.81 Km/h) is comparable to the 

particle filtering method (1.29 Km/h). However, our 

proposed method proves to be much faster (16.08 ms) than 

the particle based filtering approach (119.1 ms). The second 

test implies an incoming vehicle crossing an intersection. 

The speed estimation values are shown in the Fig. 7. The 

moving vehicle is in the field of view for only 2.5 seconds. 

It can be observed that the blob-delimiter-blob solution 

converges more quickly to the real speed of the car. 

 
Figure 7.  A comparison between the extracted speeds by using a delimiter 

based motion estimation (blue) and a particle-based occupancy grid (green). 

VI. CONCLUSIONS 

In this paper we presented a vision-based solution for 

modeling dynamic unstructured. The proposed method is 

based on information provided by a classified occupancy 

grid computed from a digital elevation map. Two separate 

representation levels are employed: a Local Dynamic 

Persistence Grid (DyPerGrid) and a map of delimiters. The 

tracking method is organized in three main steps. The first 

step is performed at the blob level and consists in 

associating the new measurements to the existing 

DyPerGrid blobs. At this stage the object delimiters are 

extracted from the DyPerGrid and from the current 

measurements as well. At the second step, the motion 

information is computed by using a pairwise alignment of 

associated delimiters. A Kalman filter is employed in order 

to obtain an optimal estimate of speed vectors. The final 

step consists in updating the DyPerGrid representation by 

taking into account both the extracted object speeds and the 

new measurements. The proposed method is described by a 

low processing-time and an accuracy that is comparable to 

the other complex tracking approaches.  
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