
  

  

Abstract—Real-time modeling of dynamic environments is 

one of the most demanding research problems in the field of 

driving assistance systems. The representation module may be 

affected by several factors such as occlusions, unpredictable 

nature of the traffic participants, wrong associations or noisy 

measurements. In this paper we propose two different methods 

for real-time modeling of dynamic environments. Both motion 

estimation techniques are vision-based and rely on information 

provided by a Digital Elevation Map. The first approach 

consists in determining the differences between the previous 

and current frames. These differences are then used for 

computing the speeds of the traffic participants. The second 

motion estimation technique consists in using a fast pairwise 

alignment of object delimiters that are extracted by radial 

scanning of the Elevation Map. The final result is a more 

compact polygonal map with associated static and dynamic 

features. 

I. INTRODUCTION 

In the context of Advanced Driver Assistance Systems 
(ADAS), real-time modeling of dynamic environments is one 
of the most demanding research problems. The detection and 
tracking of moving traffic entities is an indispensable 
intermediate step for higher level in-vehicle applications 
such as parking assistance, path planning or collision 
detection. Unlike the clearly structured traffic scenarios 
where the objects are represented by 2D bounding boxes or 
3D cuboids, modeling the dynamic entities becomes a 
difficult task when the environment to be tracked is a busy 
urban center or an intersection. The representation module 
may be affected by several factors such as occlusions, 
unpredictable nature of the traffic participants, wrong 
associations or noisy measurements. 

A common solution for tracking dynamic obstacles 
consists in extracting a set of relevant object attributes from 
the scene and estimating their motion over time. Current 
approaches can directly use 3D points[1] or they can track 
high level features such as stixels [3], object contours [5] [9], 
2D bounding boxes or 3D cuboids [2], free form polygonal 
models [4] etc. The dynamic environment representation 
techniques can be divided depending on the type of used 
sensors. Current systems includes laser [7][8][20], sonar 
[10],  radar[20] or vision based sensors [2]. The motion 
estimation methods can also be categorized by the level at 
which the dynamic features extraction is applied. Some of 
the existing approaches are based on estimating the motion 
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before computing the object model [11][13], while other 
solutions rely on extracting some relevant features and 
subsequently estimating their dynamic properties [2][4][5]. 
Many of the techniques for movement detection use 
intermediate representations as primary information. A 
common solution is mapping 3D information into octrees 
[10], digital elevation maps [12] or occupancy grids [11]. 

Dynamic obstacle detection approaches also differ by the 
data association and the way the correct correspondences are 
determined. Some methods try to detect the appearance of 
objects in successive frames. The motion is inferred by 
measuring different displacement of the same object over 
time. In [20] a difference map is computed by determining 
the object changes in two consecutive virtual scans. The 
obstacle’s center of mass and its rectangular shape are used 
as inputs for the tracking process.  

One of the most used methods for model fitting is the 
RANSAC algorithm [14].  The RANSAC approach has the 
advantages of being robust against outliers. However, its 
accuracy depends on the number of used samples and may 
lead to a high computational cost. 

Direct matching techniques, such as Iterative Closest 
Point (ICP) [15] method, are widely used in vehicle 
localization and mapping [4]. Several ICP variants are 
compared in [16].  In [4] a map with moving objects is 
segmented by considering that dynamic attributes do not 
fulfill the constraints of the SLAM. The most of ICP 
methods are adapted for laser systems and do not take into 
account the odometry information. However, the data 
association in consecutive scans is difficult to be achieved 
when the entities from the traffic scene or the ego vehicle 
moves at high speed or when the measurement uncertainties 
are not considered. 

In this paper we propose two different methods for real-
time modeling of dynamic environments. Both motion 
estimation techniques rely on information provided by a 
Digital Elevation Map. Unlike the intensity based 
registration techniques, such as optical flow, that rely on 
identifying the corresponding features based on the intensity 
of points, the proposed methods in this work are based on 
finding object correspondences by using only the object 
geometry information. The first approach consists in 
computing the differences between the previous and current 
frames and generating an evidence space called Difference 
Map. For each moving object three types of areas are 
defined: a direction front indicating the direction of the 
moving obstacles, a shadow front that is located behind the 
moving obstacles, and an object’s core area that remains 
unchanged in the consecutive frames. The speeds of the 
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traffic participants are directly computed from the moving 
object differences. The second motion estimation technique 
consists in using a fast pairwise alignment of object 
delimiters that are extracted by radial scanning of the 
Elevation Map. Unlike the other existing approaches that 
consist in aligning the whole local maps at once, and then 
separating the dynamic entities from the static ones, we first 
associate the objects at the blob level and then apply the ICP 
for each associated candidate. In order to stabilize the 
results, the speed vectors extracted by the two methods are 
subjected to a Kalman filtering. The final result is a more 
compact polygonal map with associated static and dynamic 
features. 

The remaining of the paper is structured as follows: 
Section 2 presents the architecture of the proposed dynamic 
environment modeling system. The preprocessing tasks that 
are necessary for the movement detection are detailed in the 
Section 3. Section 4 describes the two motion estimation 
techniques: based on Difference Map analysis and based on 
pairwise alignment of the object delimiters. Section 5 
describes the filtering. The experimental results and 
conclusions are presented in the last two sections. 

II. SYSTEM ARCHITECTURE 

The dynamic environment modeling module has been 
conceived for urban driving scenarios by extending our 
previous Dense Stereo-Based Object Recognition System 
(DESBOR) [6]. The extended system (Figure 1) is composed 
by the following main components:  

Image acquisition and 3D reconstruction – in this step the 
images are acquired from the two cameras at a full 
resolution. The images are undistorted, rectified and down 
sampled to a width of 512 pixels. Then, 3D reconstruction is 
performed by using a TYZX hardware board [18]. 

Intermediate representation – at this stage the 
reconstructed 3D points are used to compute a Digital 
Elevation Map (Figure 2.b and 2.c). This intermediate 
representation is described by a grid of heights. Each grid 
cell is classified as road, obstacle and traffic-isle. A detailed 
description about the Elevation Map is presented in [19]. 

Delimiters Extraction – the obstacle delimiters are 
extracted by radial scanning of the Elevation Map. With this 
approach, the erroneous results caused by the occlusions are 
minimized. A list of static polygonal models is generated as 
the result (Figure 2.b). Each delimiter inherits the type, 
position and height properties of the associated Elevation 
Map blobs. More details about delimiters extraction are 
presented in [17]. 

Preprocessing – the preprocessing module consists in 
performing a set of tasks that are necessary for the motion 
estimation component. First, the ego-vehicle motion is 
compensated in order to separate its speed from the motion 
of the other obstacles in the traffic scene. Then, the data 
association is computed at the object level by overlapping 
the Elevation Map blobs. A list of associated delimiter pairs 
is passed to the motion estimation step.  

 

Figure 1.  System Architecture 

 

Figure 2.  a) Left camera image. b) Elevation Map and the extracted 

polygonal models are projected on the left camera image (green – obstacles, 

yellow – traffic isles). c) The Elevation Map - Top View. The Map’s cells 

are classified as road (blue), traffic isle (yellow) and obstacle (red). 

Motion Estimation – two different methods are used for 
the motion estimation. The first method is based on using the 
Elevation Map information from the previous and current 
frame in order to compute a map of differences. Based on 
this map of differences we extract three types of areas called 
difference fronts, which serve for the speed vectors 
estimation. The second approach uses the associated 
delimiter pairs as the input data. The velocity information is 
computed by performing a pairwise alignment of the 
associated candidates.  

 

 



  

Filtering – a standard Kalman filter is employed in order to 
compute the objects’ filtered position and speed. 

A dynamic polygonal map is generated as the result. 
Each polyline element is characterized by its static and 
dynamic features (size, position, height, type and speed). 

III. PREPROCESSING 

The preprocessing level consists in performing a set of 
tasks necessary for the subsequent stages. 

A. Ego-Motion Compensation 

The ego-motion is compensated in order to separate the 
ego-vehicle speed from the motion of other traffic entities. 
For a given point Pt-1(xt-1, yt-1, zt-1) from the previous frame, 
the corresponding position Pt(xt, yt, zt)  in the current frame is 
estimated with the following relation: 
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Where θ  is the rotation angle around the Y axis, and tx, 

tz represent the ego-vehicle translation components on the X 
respectively Z axis. It must be noted that the rotation and 
translation parameters are estimated by using the information 
provided by the onboard sensors (speed and yaw rate). 

B. Data Association 

This step consists in associating the object delimiters in 
consecutive frames. We use the spatial overlap of objects as 
the similarity measure. For each object Oi from the previous 
frame and for each object Cj from the current frame we 
compute an overlapping score Sij. This score is given by the 
number of points that overlap. The results are stored into a 
score matrix S={Sij}. The associated pairs are determined by 
extracting candidates with the highest score from the S 
matrix. Two types of associations are used: a forward 
association, that estimates best overlapping entities in the 
current frame for all blobs in the previous frame, and a 
backward association that finds corresponding objects in the 
previous frame for all blobs from the current frame. A list 
with all distinct pairs associated in the two steps is generated 
as the result. It must be admitted that the association step is 
limited by the quality of reconstruction as well as by the 
speed of the traffic objects. However, considering the 
velocity of 50km/h as the speed limit in urban traffic 
scenarios, and the camera frame rate of 20fps, the 
overlapped area of the same car in two consecutive frames is 
about 75%. Therefore, this would be sufficient that the 
object association to be achieved. 

IV. MOTION ESTIMATION 

We have used two different approaches for the motion 
estimation stage. 

A.  Motion Estimation using Difference Maps 

A map of differences is computed by overlapping the two 
consecutive Elevation Map representations. Unlike the 
intensity based registration techniques, such as optical flow, 
that rely on identifying the corresponding features based on 
the point intensity in a image space, our method is based on 
extracting dynamic features by taking into account the 3D 
object geometry. For each cell in the previous frame we 
check its occupancy at the same position in the current 
frame. The resulted Difference Map points may belong to the 
following classes: 

Direction – the cells that are empty in the previous frame 
and are occupied in the current frame. 

Shadow – the cells that are occupied in the previous 
frame and are empty in the current frame. 

Core – the cells that are occupied in the both frames at 
the corresponding position. 

Based on the Difference Map information, a moving 
object is described by the three types of fronts (Figure 3, 
left): a direction front (the direction of the moving obstacle), 
a shadow front (located behind the moving obstacle) and a 
core area (the unchanged object part in the consecutive 
frames). 

 

Figure 3.  The main direction vector is computed by using a circular 

histogram. The histogram data samples are extracted from difference fronts. 

For each dynamic entity we calculate a dominant 
direction vector by gathering a set of circular measurements 
for difference fronts and storing them into a circular 
histogram (Figure 3, right). Thus, for a cell situated at the 
object boundary we accumulate all the difference points into 
the histogram by moving along a virtual ray towards the 
object center of mass Cm. Each computed data sample is 

described by an angle iθ  and a magnitude Mi (the magnitude 

is directly proportional to the number of accumulated 
difference points). The mean direction of a moving object is 
computed by using vector addition for all components 
accumulated into the histogram. 

 θ = atan2(Vz, Vx). (2) 
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The mean vector magnitude is defined by: 
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where N is the number of individual vectors in the 
histogram. 

B. Motion Estimation based on ICP technique 

Unlike the previous method, this approach is based on 
the information provided by the list of associated contour 
pairs. For each distinct pair we compute correspondences 
between the two object delimiters and estimate an optimal 
rotation R and a translation T that minimize the alignment 
error. For the contour alignment we use the Iterative Closest 
Point (ICP) approach [15]. For each pair that identifies the 
same object in the consecutive frames we define two set of 
points: a model set P={p1,p2, ..., pM} that describes the object 
contour in the previous frame, and a data set Q={q1,q2, ..., 

qK} that describes the object contour in the current frame. 
For each point qj from Q the corresponding closest point pi 
from P is found. We want to find an optimal rotation R and 
translation T that minimize the alignment error. The 
objective function is defined: 
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i
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where pi and qi are the corresponding point pairs of the 

two sets and N is the total number of correspondences. The 

proposed alignment method consists in the following main 

steps: 

1) Matching: for each point qi from data set Q, the 
closest point from the model set P is found.  

 ),(min),(
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A list of correspondent pairs is generated. Usually this 
task is the most computationally extensive in the ICP 
algorithm. The classical brute force search approach has a 

complexity of )( pq NNO ⋅ . In order to reduce the complexity 

to )log( pq NNO ⋅ many ICP methods employ KD-Tree data 

structures [22]. In our case, for finding closest points, we use 
a modified version of Chamfer based Distance Transform 
[21]. For each separate model contour, two maps (Figure 4) 
are computed: a distance map that stores the minimum 
distances to the closest points, and a correspondence map, 
storing the positions of the closest points.Thus, for each 
point from the data set, a corresponding point is found by 
superimposing the data contour on the two masks. 

2) Outliers Rejection: The purpose of this stage is to 
filter erroneous correspondences that could introduce a bias 
in the estimation of translation and rotation. Two types of 
rejection strategies are used: distance based rejection, and 
boundary based rejection. The first strategy consists in 
eliminating the pairs whose point-to-point distance 

),( ji pqd  is larger than a given threshold Dt. In addition 

the stereo-system uncertainties are taken into account. As 
suggested by [11], if we assume that the stereo-vision system 
is rectified, then the z error is computed: 
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Figure 4.  An example of Distance Transforms (b) and Corresponding 

Mask (c) that are computed for a dynamic obstacle (a). Data delimiters 

(gray color) and model delimiters (white color) are superimposed on the 

Distance Transform image. The Corresponding Mask’s colors (c) identify 

uniquely the closest point from the model set. 

Where f is the focal length, z is the depth distance, b is 

the stereo system baseline and dσ denotes the disparity 

error. For each corresponding pair (pi,qi) from the two sets, 
the rejection is made according to the following relation: 

 ztji Dpqd σ+>),(  (8) 

The second type of rejecting consists in removing the 
point correspondences caused by incomplete overlap. 
Usually, these situations occur when one of the two contours 
is incompletely extracted due to occlusions. 

3) Error Minimization: in this step we determine an 
optimal transformation M by minimizing the objective 
function defined by Equation (5).The rotation matrix R 

around the Y axis is linearized by approximating αcos  by 1 

and αsin byα : 
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The rotation R and the translation T are combined into a 
single transformation matrix M: 
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The Equation (5) can be rewritten as: 
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The ),( TRE is minimized with respect toα , tx, ty, and tz 

by setting the partial derivatives to zero: 

 ( )

( )

( )


















=−−+=
∂

∂

=−+=
∂

∂

=−++=
∂

∂

=












+−−

++
=

∂

∂

∑

∑

∑

∑

=

=

=

=

02
),(

02
),(

02
),(

0
)(

2
),(

1

,,,,

1

,,,

1

,,,,

1 ,,,,,,

,,

2

,

2

,

N

i

zixizizi

z

N

i

yiyiyi

y

N

i

xizixixi

x

N

i xizizixixizi

zixizixi

qppt
t

TRE

qpt
t

TRE

qppt
t

TRE

pqpqpt

ptppTRE

α

α

α

α

 (12) 

The unknown coefficientsα , tx, ty, and tz are determined 

by solving the system of equations (12). 

4) Updating: assuming that we have estimated new R and 
T parameters in the previous step, a new target set is 
computed by applying the new transformation M to the 
model set. A global transformation MG is updated: 

 MMM GG ⋅=  (13) 

5) Convergence testing: at this step an error metric is 
estimated by computing the average point-to-point distance 
between the measurement set and the transformed model: 
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If the error is greater than a given threshold, the process 
continues with a new iteration. The algorithm stops when the 
computed error is below the selected error threshold or when 
a maximum iteration number has been exceeded. 

V. FILTERING 

Each object is tracked in order to compute its filtered 
position and speed. A standard Kalman filter is used. The 
state of each obstacle is described by the coordinates of the 
obstacle center of mass Cm(Xm, Zm) and by the mean direction 

vector speed components r
r

=(Vx, Vz):  

 
T
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For each new object a new tracker is initialized. If an 
obstacle has an associated object in the previous frame, then 
the associated tracker is updated with the current frame 
measurements and the obstacle state is estimated based on 
the current measurements. The measurement covariance 
matrix R is computed based on the stereo uncertainty model 
described in [11]. The process covariance matrix Q is 
estimated considering a certain covariance for the obstacles’ 
acceleration. 

VI. EXPERIMENTAL RESULTS 

We tested our dynamic environment representation 
approaches on 23 traffic scenarios from urban environments. 
For our experiments we used a 2.66GHz Intel Core 2 Duo 
Computer with 2GB of RAM. The data acquisition was made 
at a maximum frame rate of 24fps. The acquisition system is 

composed by two grayscale cameras including 2/3'' CCD 
sensors with a fixed focal length of 6.5mm. Our processing 
steps are based on undistorted, rectified and down-sampled 
images (512 pixel width). Figure 5 presents intermediate 
results obtained with the two motion estimation methods for 
the same traffic scene. The dynamic obstacles with a speed 
greater than 15km/h are colored with red. The resulted 
difference map is presented in Figure 5.b. We used blue 
color for the direction fronts and magenta color for the 
shadow fronts. Figure 5.c presents the pairwise alignment of 
the two associated object delimiters. The model delimiter 
(extracted in the previous frame) is colored with yellow, 
while the data contour (extracted in the current frame) is 
drawn with blue. The ICP alignment result is represented 
with red. 

 

Figure 5.  The motion estimation with intermediate results: a) A traffic 

scene b) Resulted Difference Map. Direction fronts are colored with blue, 

shadow fronts are colored with magenta and core area is represented with 

green. The yellow color is used for traffic isles. c) The ICP alignment result 

(red color) between a model delimiter that was extracted in the previous 

frame (yellow) and a data delimiter that was extracted in the current frame 

(blue).  d) the environment representation result with dynamic (red) and 

static (green) obstacles. 

In Figure 6 the two motion estimation methods are 
compared in terms of their extracted speeds. 

Table 1 shows a comparative result obtained in the case 
of the two motion estimation techniques. In order to compute 
the speed estimation accuracy we used a stationary test 
vehicle with a target speed of zero as the ground truth for our 
measurements. For the ICP based motion estimation we set 

 



  

the maximum number of iteration to 10. We obtained a better 
accuracy in the case of ICP approach. However its accuracy 
depends on the number of iterations used to align the two 
object delimiters. 

 

Figure 6.  The estimated speeds in the case of the motion estimation 

method based on difference maps (blue color) and the mootion estimation 

based on ICP alignment (red color). 

TABLE I.  SPEED ESTIMATION 

 
Speed Estimation Methods 

Difference Maps ICP 

Accuracy (MAE) 9.8Km/h 7.5Km/h 

Average processing 

time per frame 
8.4ms 28.3ms 

 

VII. CONCLUSIONS 

In this paper we propose two different methods for real-
time modeling of dynamic environments. Both motion 
estimation techniques are based on information provided by 
a Digital Elevation Map. Our first approach consists in 
computing the differences between the previous and current 
frames and generating an evidence space called Difference 
Map. For each moving object three types of areas are 
defined: a direction front indicating the direction of the 
moving obstacles, a shadow front that is located behind the 
moving obstacles, and an object’s core area that remains 
unchanged in the consecutive frames. The speeds of the 
traffic participants are directly computed from the moving 
object differences. The second motion estimation technique 
consists in using a fast pairwise alignment of object 
delimiters that are extracted by radial scanning of the 
Elevation Map. Unlike the other approaches that align the 
whole local maps at once, and then extract the dynamic 
features, we first associate the objects at the blob level and 
then apply the ICP for each associated candidate. In order to 
stabilize the results, the extracted speed vectors are filtered 
by using a standard Kalman filter. The results show that the 
ICP algorithm usually produce more accurate results but at a 
higher computational cost. As the future work we propose to 
improve our approaches by using also the intensity 
information as in the optical flow methods. 
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