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Abstract—Real-time modeling of dynamic environments is
one of the most demanding research problems in the field of
driving assistance systems. The representation module may be
affected by several factors such as occlusions, unpredictable
nature of the traffic participants, wrong associations or noisy
measurements. In this paper we propose two different methods
for real-time modeling of dynamic environments. Both motion
estimation techniques are vision-based and rely on information
provided by a Digital Elevation Map. The first approach
consists in determining the differences between the previous
and current frames. These differences are then used for
computing the speeds of the traffic participants. The second
motion estimation technique consists in using a fast pairwise
alignment of object delimiters that are extracted by radial
scanning of the Elevation Map. The final result is a more
compact polygonal map with associated static and dynamic
features.

I. INTRODUCTION

In the context of Advanced Driver Assistance Systems
(ADAS), real-time modeling of dynamic environments is one
of the most demanding research problems. The detection and
tracking of moving traffic entities is an indispensable
intermediate step for higher level in-vehicle applications
such as parking assistance, path planning or collision
detection. Unlike the clearly structured traffic scenarios
where the objects are represented by 2D bounding boxes or
3D cuboids, modeling the dynamic entities becomes a
difficult task when the environment to be tracked is a busy
urban center or an intersection. The representation module
may be affected by several factors such as occlusions,
unpredictable nature of the traffic participants, wrong
associations or noisy measurements.

A common solution for tracking dynamic obstacles
consists in extracting a set of relevant object attributes from
the scene and estimating their motion over time. Current
approaches can directly use 3D points[1] or they can track
high level features such as stixels [3], object contours [5] [9],
2D bounding boxes or 3D cuboids [2], free form polygonal
models [4] etc. The dynamic environment representation
techniques can be divided depending on the type of used
sensors. Current systems includes laser [7][8][20], sonar
[10], radar[20] or vision based sensors [2]. The motion
estimation methods can also be categorized by the level at
which the dynamic features extraction is applied. Some of
the existing approaches are based on estimating the motion
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before computing the object model [11][13], while other
solutions rely on extracting some relevant features and
subsequently estimating their dynamic properties [2][4][5].
Many of the techniques for movement detection use
intermediate representations as primary information. A
common solution is mapping 3D information into octrees
[10], digital elevation maps [12] or occupancy grids [11].

Dynamic obstacle detection approaches also differ by the
data association and the way the correct correspondences are
determined. Some methods try to detect the appearance of
objects in successive frames. The motion is inferred by
measuring different displacement of the same object over
time. In [20] a difference map is computed by determining
the object changes in two consecutive virtual scans. The
obstacle’s center of mass and its rectangular shape are used
as inputs for the tracking process.

One of the most used methods for model fitting is the
RANSAC algorithm [14]. The RANSAC approach has the
advantages of being robust against outliers. However, its
accuracy depends on the number of used samples and may
lead to a high computational cost.

Direct matching techniques, such as Iterative Closest
Point (ICP) [15] method, are widely used in vehicle
localization and mapping [4]. Several ICP variants are
compared in [16]. In [4] a map with moving objects is
segmented by considering that dynamic attributes do not
fulfill the constraints of the SLAM. The most of ICP
methods are adapted for laser systems and do not take into
account the odometry information. However, the data
association in consecutive scans is difficult to be achieved
when the entities from the traffic scene or the ego vehicle
moves at high speed or when the measurement uncertainties
are not considered.

In this paper we propose two different methods for real-
time modeling of dynamic environments. Both motion
estimation techniques rely on information provided by a
Digital Elevation Map. Unlike the intensity based
registration techniques, such as optical flow, that rely on
identifying the corresponding features based on the intensity
of points, the proposed methods in this work are based on
finding object correspondences by using only the object
geometry information. The first approach consists in
computing the differences between the previous and current
frames and generating an evidence space called Difference
Map. For each moving object three types of areas are
defined: a direction front indicating the direction of the
moving obstacles, a shadow front that is located behind the
moving obstacles, and an object’s core area that remains
unchanged in the consecutive frames. The speeds of the



traffic participants are directly computed from the moving
object differences. The second motion estimation technique
consists in using a fast pairwise alignment of object
delimiters that are extracted by radial scanning of the
Elevation Map. Unlike the other existing approaches that
consist in aligning the whole local maps at once, and then
separating the dynamic entities from the static ones, we first
associate the objects at the blob level and then apply the ICP
for each associated candidate. In order to stabilize the
results, the speed vectors extracted by the two methods are
subjected to a Kalman filtering. The final result is a more
compact polygonal map with associated static and dynamic
features.

The remaining of the paper is structured as follows:
Section 2 presents the architecture of the proposed dynamic
environment modeling system. The preprocessing tasks that
are necessary for the movement detection are detailed in the
Section 3. Section 4 describes the two motion estimation
techniques: based on Difference Map analysis and based on
pairwise alignment of the object delimiters. Section 5
describes the filtering. The experimental results and
conclusions are presented in the last two sections.

II. SYSTEM ARCHITECTURE

The dynamic environment modeling module has been
conceived for urban driving scenarios by extending our
previous Dense Stereo-Based Object Recognition System
(DESBOR) [6]. The extended system (Figure 1) is composed
by the following main components:

Image acquisition and 3D reconstruction — in this step the
images are acquired from the two cameras at a full
resolution. The images are undistorted, rectified and down
sampled to a width of 512 pixels. Then, 3D reconstruction is
performed by using a TYZX hardware board [18].

Intermediate representation - at this stage the
reconstructed 3D points are used to compute a Digital
Elevation Map (Figure 2.b and 2.c). This intermediate
representation is described by a grid of heights. Each grid
cell is classified as road, obstacle and traffic-isle. A detailed
description about the Elevation Map is presented in [19].

Delimiters Extraction — the obstacle delimiters are
extracted by radial scanning of the Elevation Map. With this
approach, the erroneous results caused by the occlusions are
minimized. A list of static polygonal models is generated as
the result (Figure 2.b). Each delimiter inherits the type,
position and height properties of the associated Elevation
Map blobs. More details about delimiters extraction are
presented in [17].

Preprocessing — the preprocessing module consists in
performing a set of tasks that are necessary for the motion
estimation component. First, the ego-vehicle motion is
compensated in order to separate its speed from the motion
of the other obstacles in the traffic scene. Then, the data
association is computed at the object level by overlapping
the Elevation Map blobs. A list of associated delimiter pairs
is passed to the motion estimation step.
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Figure 2. a) Left camera image. b) Elevation Map and the extracted
polygonal models are projected on the left camera image (green — obstacles,
yellow — traffic isles). ¢) The Elevation Map - Top View. The Map’s cells
are classified as road (blue), traffic isle (yellow) and obstacle (red).

Motion Estimation — two different methods are used for
the motion estimation. The first method is based on using the
Elevation Map information from the previous and current
frame in order to compute a map of differences. Based on
this map of differences we extract three types of areas called
difference fronts, which serve for the speed vectors
estimation. The second approach uses the associated
delimiter pairs as the input data. The velocity information is
computed by performing a pairwise alignment of the
associated candidates.



Filtering — a standard Kalman filter is employed in order to
compute the objects’ filtered position and speed.

A dynamic polygonal map is generated as the result.
Each polyline element is characterized by its static and
dynamic features (size, position, height, type and speed).

III. PREPROCESSING

The preprocessing level consists in performing a set of
tasks necessary for the subsequent stages.

A. Ego-Motion Compensation

The ego-motion is compensated in order to separate the
ego-vehicle speed from the motion of other traffic entities.
For a given point P, ;(x,;, ¥.;, 2.;) from the previous frame,
the corresponding position P(x, y, z,) in the current frame is
estimated with the following relation:

xr xt—l tx
yo| =R,(6) v, | +|0 (1)
Zr Zt—l tz

Where @ is the rotation angle around the Y axis, and z,,
t, represent the ego-vehicle translation components on the X
respectively Z axis. It must be noted that the rotation and
translation parameters are estimated by using the information
provided by the onboard sensors (speed and yaw rate).

B. Data Association

This step consists in associating the object delimiters in
consecutive frames. We use the spatial overlap of objects as
the similarity measure. For each object O; from the previous
frame and for each object C; from the current frame we
compute an overlapping score Sj;. This score is given by the
number of points that overlap. The results are stored into a
score matrix S={S;/. The associated pairs are determined by
extracting candidates with the highest score from the S
matrix. Two types of associations are used: a forward
association, that estimates best overlapping entities in the
current frame for all blobs in the previous frame, and a
backward association that finds corresponding objects in the
previous frame for all blobs from the current frame. A list
with all distinct pairs associated in the two steps is generated
as the result. It must be admitted that the association step is
limited by the quality of reconstruction as well as by the
speed of the traffic objects. However, considering the
velocity of 50km/h as the speed limit in urban traffic
scenarios, and the camera frame rate of 20fps, the
overlapped area of the same car in two consecutive frames is
about 75%. Therefore, this would be sufficient that the
object association to be achieved.

IV. MOTION ESTIMATION

We have used two different approaches for the motion
estimation stage.

A. Motion Estimation using Difference Maps

A map of differences is computed by overlapping the two
consecutive Elevation Map representations. Unlike the
intensity based registration techniques, such as optical flow,
that rely on identifying the corresponding features based on
the point intensity in a image space, our method is based on
extracting dynamic features by taking into account the 3D
object geometry. For each cell in the previous frame we
check its occupancy at the same position in the current
frame. The resulted Difference Map points may belong to the
following classes:

Direction — the cells that are empty in the previous frame
and are occupied in the current frame.

Shadow — the cells that are occupied in the previous
frame and are empty in the current frame.

Core — the cells that are occupied in the both frames at
the corresponding position.

Based on the Difference Map information, a moving
object is described by the three types of fronts (Figure 3,
left): a direction front (the direction of the moving obstacle),
a shadow front (located behind the moving obstacle) and a
core area (the unchanged object part in the consecutive
frames).
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Figure 3. The main direction vector is computed by using a circular
histogram. The histogram data samples are extracted from difference fronts.

For each dynamic entity we calculate a dominant
direction vector by gathering a set of circular measurements
for difference fronts and storing them into a circular
histogram (Figure 3, right). Thus, for a cell situated at the
object boundary we accumulate all the difference points into
the histogram by moving along a virtual ray towards the
object center of mass C,. Each computed data sample is

described by an angle 01' and a magnitude M, (the magnitude

is directly proportional to the number of accumulated
difference points). The mean direction of a moving object is
computed by using vector addition for all components
accumulated into the histogram.

6= atan2(V,, V,). Q)

where:
N N
V.= M, cos(6,).V.=> M sin(6) ()
i=1 i=1

The mean vector magnitude is defined by:
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where N is the number of individual vectors in the
histogram.

B. Motion Estimation based on ICP technique

Unlike the previous method, this approach is based on
the information provided by the list of associated contour
pairs. For each distinct pair we compute correspondences
between the two object delimiters and estimate an optimal
rotation R and a translation 7 that minimize the alignment
error. For the contour alignment we use the Iterative Closest
Point (ICP) approach [15]. For each pair that identifies the
same object in the consecutive frames we define two set of
points: a model set P={p,,p,, ..., py/ that describes the object
contour in the previous frame, and a data set O={q,q,, ...,
qx/ that describes the object contour in the current frame.
For each point g; from Q the corresponding closest point p;
from P is found. We want to find an optimal rotation R and
translation 7 that minimize the alignment error. The
objective function is defined:

N
ERT)=Y|Rp, +T -q/| 6
i=1

where p; and g; are the corresponding point pairs of the
two sets and N is the total number of correspondences. The
proposed alignment method consists in the following main
steps:

1) Matching: for each point g; from data set Q, the
closest point from the model set P is found.

d(qi,P):jEI{Ill}II}p}d(qiapj) (6)

A list of correspondent pairs is generated. Usually this
task is the most computationally extensive in the ICP
algorithm. The classical brute force search approach has a
complexity of O(N ., N, In order to reduce the complexity

to O(N, -log N ,)many ICP methods employ KD-Tree data

structures [22]. In our case, for finding closest points, we use
a modified version of Chamfer based Distance Transform
[21]. For each separate model contour, two maps (Figure 4)
are computed: a distance map that stores the minimum
distances to the closest points, and a correspondence map,
storing the positions of the closest points.Thus, for each
point from the data set, a corresponding point is found by
superimposing the data contour on the two masks.

2) Outliers Rejection: The purpose of this stage is to
filter erroneous correspondences that could introduce a bias
in the estimation of translation and rotation. Two types of
rejection strategies are used: distance based rejection, and
boundary based rejection. The first strategy consists in
eliminating the pairs whose point-to-point distance

d(q;,p;) is larger than a given threshold D,. In addition
the stereo-system uncertainties are taken into account. As

suggested by [11], if we assume that the stereo-vision system
is rectified, then the z error is computed:
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Figure 4. An example of Distance Transforms (b) and Corresponding
Mask (c) that are computed for a dynamic obstacle (a). Data delimiters
(gray color) and model delimiters (white color) are superimposed on the
Distance Transform image. The Corresponding Mask’s colors (c) identify
uniquely the closest point from the model set.

Where f is the focal length, z is the depth distance, b is
the stereo system baseline and O, denotes the disparity

error. For each corresponding pair (p;q;) from the two sets,
the rejection is made according to the following relation:

d(q;»p;)>D,+o0, )

The second type of rejecting consists in removing the
point correspondences caused by incomplete overlap.
Usually, these situations occur when one of the two contours
is incompletely extracted due to occlusions.

3) Error Minimization: in this step we determine an
optimal transformation M by minimizing the objective
function defined by Equation (5).The rotation matrix R
around the Y axis is linearized by approximating COS& by 1

and sin by & :

cosa 0 sina 1 0 «
R@= 0 1 0 |={0 1 0 ©
—sina 0 cosa -a 0 1

The rotation R and the translation 7" are combined into a
single transformation matrix M:

I 0 a 1
M= R T 0O 1 0 t, (10)
0 1] |-a 0 1 ¢
0 0 0 1]
The Equation (5) can be rewritten as:
- 2
1 O a t,\' pi,x qi,x
yIbo 1 0 ¢ : _
FRT=S Aeo|_fa. ] av
|- 0 1 ¢ |p., 4q;.
0 0 0 1] 1 |1




The E(R,T) is minimized with respect to &, t,, t,, and t,
by setting the partial derivatives to zero:

ERT) )5 apl + i+ ],
Ja it | i Pie —9ixPi- T4 Pi
N

yﬂz(ﬂﬁmﬁapm—q,.,x)=o (12)

X i=1
% = zi (ti,y + pi,y _q,"y )= 0

y i=1
% = Zi (t,._z +pi. -0, —q;. )= 0

z i=1

The unknown coefficients & , t,, t,,

by solving the system of equations (12).

and 7, are determined

4) Updating: assuming that we have estimated new R and

T parameters in the previous step, a new target set is

computed by applying the new transformation M to the

model set. A global transformation M is updated:

M,=M,-M (13)

5) Convergence testing: at this step an error metric is

estimated by computing the average point-to-point distance
between the measurement set and the transformed model:

1N
Err=— —q.
=2 lp-al

If the error is greater than a given threshold, the process
continues with a new iteration. The algorithm stops when the
computed error is below the selected error threshold or when
a maximum iteration number has been exceeded.

(14)

V. FILTERING

Each object is tracked in order to compute its filtered
position and speed. A standard Kalman filter is used. The
state of each obstacle is described by the coordinates of the
obstacle center of mass C,,(X,, Z,) and by the mean direction

vector speed components 7 =(V,, V.):

x=(X,.Y,.V.V,) (15)

For each new object a new tracker is initialized. If an
obstacle has an associated object in the previous frame, then
the associated tracker is updated with the current frame
measurements and the obstacle state is estimated based on
the current measurements. The measurement covariance
matrix R is computed based on the stereo uncertainty model
described in [11]. The process covariance matrix Q is
estimated considering a certain covariance for the obstacles’
acceleration.

VI. EXPERIMENTAL RESULTS

We tested our dynamic environment representation
approaches on 23 traffic scenarios from urban environments.
For our experiments we used a 2.66GHz Intel Core 2 Duo
Computer with 2GB of RAM. The data acquisition was made
at a maximum frame rate of 24fps. The acquisition system is

composed by two grayscale cameras including 2/3" CCD
sensors with a fixed focal length of 6.5mm. Our processing
steps are based on undistorted, rectified and down-sampled
images (512 pixel width). Figure 5 presents intermediate
results obtained with the two motion estimation methods for
the same traffic scene. The dynamic obstacles with a speed
greater than 15km/h are colored with red. The resulted
difference map is presented in Figure 5.b. We used blue
color for the direction fronts and magenta color for the
shadow fronts. Figure 5.c presents the pairwise alignment of
the two associated object delimiters. The model delimiter
(extracted in the previous frame) is colored with yellow,
while the data contour (extracted in the current frame) is
drawn with blue. The ICP alignment result is represented
with red.

Figure 5. The motion estimation with intermediate results: a) A traffic
scene b) Resulted Difference Map. Direction fronts are colored with blue,
shadow fronts are colored with magenta and core area is represented with
green. The yellow color is used for traffic isles. ¢) The ICP alignment result
(red color) between a model delimiter that was extracted in the previous
frame (yellow) and a data delimiter that was extracted in the current frame
(blue). d) the environment representation result with dynamic (red) and
static (green) obstacles.

In Figure 6 the two motion estimation methods are
compared in terms of their extracted speeds.

Table 1 shows a comparative result obtained in the case
of the two motion estimation techniques. In order to compute
the speed estimation accuracy we used a stationary test
vehicle with a target speed of zero as the ground truth for our
measurements. For the ICP based motion estimation we set



the maximum number of iteration to 10. We obtained a better
accuracy in the case of ICP approach. However its accuracy
depends on the number of iterations used to align the two
object delimiters.
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Figure 6. The estimated speeds in the case of the motion estimation
method based on difference maps (blue color) and the mootion estimation
based on ICP alignment (red color).

TABLE L SPEED ESTIMATION
Speed Estimation Methods
Difference Maps Icp
Accuracy (MAE) 9.8Km/h 7.5Km/h
Average processing 8.4ms 28.3ms
time per frame

VII. CONCLUSIONS

In this paper we propose two different methods for real-
time modeling of dynamic environments. Both motion
estimation techniques are based on information provided by
a Digital Elevation Map. Our first approach consists in
computing the differences between the previous and current
frames and generating an evidence space called Difference
Map. For each moving object three types of areas are
defined: a direction front indicating the direction of the
moving obstacles, a shadow front that is located behind the
moving obstacles, and an object’s core area that remains
unchanged in the consecutive frames. The speeds of the
traffic participants are directly computed from the moving
object differences. The second motion estimation technique
consists in using a fast pairwise alignment of object
delimiters that are extracted by radial scanning of the
Elevation Map. Unlike the other approaches that align the
whole local maps at once, and then extract the dynamic
features, we first associate the objects at the blob level and
then apply the ICP for each associated candidate. In order to
stabilize the results, the extracted speed vectors are filtered
by using a standard Kalman filter. The results show that the
ICP algorithm usually produce more accurate results but at a
higher computational cost. As the future work we propose to
improve our approaches by using also the intensity
information as in the optical flow methods.
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