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Abstract: The detection of moving traffic particita is an essential intermediate step for higheellelriving
technology tasks. Regardless of the type of usedoss, dynamic environment modeling becomes even
more difficult when the surrounding world is unstuwred and heterogeneous. In such complex
environments the representation system can beteffdry noisy measurements, occlusions, wrong data
association or unpredictable nature of the trgfficticipants. We propose a solution of representirey
dynamic environment in real-time by using the p@&@mnalignment of free-form models and considerhmey t
advantages provided by a dense stereovision syststead of registering the whole 3D point cloudy o
method is based on extracting and registering aencompact model of the environment taking into
consideration the most visible object cells frora #go car. The proposed method is based on infammat
provided by a Digital Elevation-Map, but can be ilgasdapted for other types of intermediate
representations.

1 INTRODUCTION can directly use 3D points (Franke, 2005), or they
can track high level attributes such as 2D boxes or

In the context of Advanced Driver Assistance SD cuboids (Danescu, 2007), stixels (Pfeiffer, 2010

Systems, modeling static and dynamic entities ef th ree-form polygonal models (Wang, 2007), object
environment is a key problem. The detection of contours (Prakash, 2007, Yokoyama, 2005) etc.
moving traffic participants is an essential The dynamic obstacle modeling solutions can be

intermediate step for higher level driving techmplo classified by the nature of us_eql sensors. The most
tasks such as collision warning and avoidance, pathc0mmon used sensors are vision based (Danescu,
planning or parking assistance. The problem of 2007), laser (Thomas, 2010, Madhavan, 2002), sonar

dynamic environment representation becomes even(Fairfield, 2007) or radar. The motion estimation

more difficult when the surrounding world is techniques are also distinguished by the level at
unstructured and heterogeneous, including the cased/hich the dynamic features detection is applied.
of crowded urban centers, traffic intersectionsfor ~ o°me Of the existing methods rely on computing
road scenarios. The representation component may"otion before generating a model (Danescu, 2012,
be infuenced by several factors: noisy Hess, 2008), while other methods are based on

measurements, occlusions, wrong data association ofXtracting  some  attributes and  subsequently
unpredictable nature of the traffic participants. | €stimating their dynamic parameters (Danescu,
such complex environments, a driver assistance2007, Wang, 2007 and Prakash, 2007).

system should be able to detect other moving traffi . Many of dynamic object detection solutions use
entities in real-time and at a high accuracy. intermediate representations as primary information

Usually, the classic approaches of dynamic A common prgctice is mapping 3D info!rmation in_to
obstacles detection and tracking consist in extrget ~ °ccupancy grids (Danescu, 2012), digital elevation
a set of features from the scene and estimating the"aPs (Danescu, 2009) or octrees (Fairfield, 2007).

motion from their displacement. Current solutions  1he data association and identifying correct
correspondences steps play an important role in



estimating the motion of the traffic entities. Oofe points from the ego-vehicle by performing a

the widely used methods for model fitting in the radial scanning of the environment (Vatavu,

presence of many data outliers is the RANSAC 2009);

algorithm (Fischler, 1981). However, its accuracy = The previously extracted speeds are used as

depends directly on the number of used samples. the initial guess for the ICP algorithm;

This may lead to a high computational cost. = In order to filter the alignment outliers, a
Direct matching solutions such as lterative rejection metric that includes stereo

Closest Point (ICP) (Besl and McKay, 1992) uncertainties is proposed;

algorithm are most common for vehicle localization Our method is based on information provided by
and mapping (Wang, 2007). In (Rusinkiewicz, 2001) a Digital Elevation-Map, but can be easily adapted
the convergence performance for several ICP for other types of intermediate representations.
variants is compared. An optimized ICP method that The remaining of the paper is structured as
uses a constant time variant for finding the follows: Section 2 introduces the architectureld t
correspondences is presented. In (Wang, 2007) groposed dynamic environment representation.
moving objects map is segmented by assuming thatSection 3 presents the pre-processing module with a
dynamic parts do not fulfill the constraints of the group of necessary tasks for extracting object
SLAM. However, the most of scan matching dynamic properties. In section 4, the main steps of
methods do not take into consideration the ego-the motion estimation component are detailed. The
motion parameters. The data association of objectslast two sections show the experimental results and
in subsequent scans is hard to be achieved when theonclusion about this contribution.
traffic participants or the ego vehicle moves ahhi
speeds or when the measurement uncertainties are
not taken into account. 2 SYSTEMARCHITECTURE

We propose a solution of representing the

dynamic _environment in real-ime by using the The dynamic environment representation method

pairwise alignment of free-form delimiters and has been developed and adapted for crowded
ctc)n5|dgr|r1g thet advalljntagers] .tprowdtid bg. ?environments such as urban city traffic scenes. In
stereovision systém, Dy inneriting € Object g paper we extend our previous Dense Stereo-
information from the intermediate representation. Based Object Recognition System (DESBOR)

Instead .Of registering the vyhole 3D point_ c_Ioudc ou (Nedevschi, 2007). The system architecture could be
method is based on extracting the most visibleatbje divided in four main blocks: data acquisition aridl 3

?elltshfror‘lrj the egtlo car and\x/smg them as mp;Jt dcT’ltarecons.truction, intermediate representation, pre-
?‘rth N alngn'melnlchr)ocless..th N gropos:e an ex ergs'?nprocessing, and motion estimation.
or the classica algorithm by applying a Set of 515 acquisition and 3D reconstructionis the first

improvement heuristics: - . .
Lhedclassma] scan rr]natchlng teczmques. dltls reconstruction is performed using a specialized
friin tgre?/isctnllgaic;ni c(())rr]:;spb%r;e%nt O':;'O tr?es TYZX'(WoodiII, 200{1) board. Thg resulted point

. o - cloud is used as the input information for compmitin
proximity criterion. In our case we mtr_oduce a the Digital Elevation Map.
pre-procesdsmg step. bF'rSt' Wi f'ndd The Intermediate representation: the raw dense stereo
?cocg:ﬁzE?gxfrg%?ega}lrzspreevti\gﬁzr}r;rse)m:n; thsgtinformation is mapped ipto a Digital Ele\{ation Map.
measurement set (current frame results) byThe resulted intermediate representation contains
findi imilarities bet biect blob d three types of cells: road, trafﬁq |sIe'and .objél'die.
inding simrariies between object blobs and o5 are Jabeled based on their height information

gﬁssmg lthls ;nformatl?n dat thte contog_r dletvel._ More details about the Elevation Map are presented
en, a list of associated contour candidates is; | (Oniga, 2010).

generated and is used as the input for the next
steps of the alignment;

= For the registration process we use free-form
polygonal models that minimize the erroneous
results caused by occlusions, or by stereo
reconstruction errors. The main idea is that we
are taking into account only the most visible

Pre-processing: The pre-processing level groups a

set of basic tasks that are performed prior the ICP
algorithm. At this phase, the object contours are
extracted by radial scanning of the Elevation Map.
For the delimiters extraction we use the Border
Scanner algorithm previously developed by us
(Vatavu, 2009). We apply the ego-motion



compensation for the Elevation Map and contours set of vertices describing the polygon, position,
that are extracted in previous frame, assuming thatheight, type (traffic isle, obstacle), orientatiand

we know the odometry information. The ego-vehicle magnitude.

motion is compensated in order to separate itsdspee  In our case the two cameras are placed on a
from the independent motion of the objects in the moving vehicle. We use a coordinate system where
traffic scene. Another pre-processing task is to the z axis points toward the direction of the ego-
associate the polygonal models. The data assatiatio vehicle, and the x axis is oriented to the righte T

is achieved by using the maximum overlapping origin of the coordinate system is situated in froh
score of the Elevation Map blobs. Considering that the car (Figure 3).

each polygonal model inherits the blob type, ibals

inherits the blob association information.
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OO0 The pre-processing stage consists in performing
7 necessary tasks prior the motion estimation. First,
! extracting a sufficiently generic model is needed.
| 3D Reconstruction | The extracted model should allow us the creation of
*"7 fast subsequent algorithms and as well it should

minimize the representation errors caused by noisy

‘ 3D Point Cloud ‘ . A
3D reconstruction or by occlusions.
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) ) Figure 2: a) An urban traffic scene. b) The ElexatMap
Figure 1: System Architecture. projected on the left camera image. d) The top \déthe
Elevation Map. The Elevation Map cells are classifi
(blue — road, yellow — traffic isle, red — obsta}lec) A
Motion Estimation: As the result of the pre- compact representation of the environment. Theaetdd
processing level, a list of candidates is proviftad polygonal models are considered static. The exact
the ICP module. Each candidate represents a pair ofelimiters inherit the object information from the
associated contours in the previous stage. For eactfevation Map (green — obstacles, yellow — trafies).
candidate, a rotation and a translation is estichbie . .
the ICP algorithm. Then the computed motion A Seécond task is to separate the ego-vehicle
information is associated to the static polygonal SPeed from the independent motion of the other
models. A dynamic polyline map is generated as theobjects in _the traffic scene. This is achieved by
result. Each polyline element is characterized by a compensating the ego motion.




And finally, elevation map blob is labeled and is 3.2 Ego-Motion Compensation

used in data association. As the result a listadfsp

of contours is extracted and is provided subsedyient Before estimating the motion of the traffic enstie

to the ICP step. Thus, unlike the other classical the movement of the ego vehicle must also be taken
methods that involve aligning the whole local maps into consideration. In order to compensate the ego
at once, and then segmenting the dynamic obstaclesnotion in the successive frames, for each given

from the static ones, we first associate the obetac
at the blob level and then apply the ICP for each
associated candidate.

Digital Elevation Map

Figure 3: Coordinate System.

3.1 Polyline-Based Environment
Perception

point Pyi(X.1, Y1, Z1) in the previous frame, the
corresponding coordinatd%(x, ¥, z) in the current
frame are computed by applying the following
transformation:

X, x.| [0
v | =R,@) yu | +| 0 @
Zt Zt—l tz

Where Ry (l//) is the rotation matrix around the

Y axis with a given ang#/, andt, is the translation

on the Z axis. The rotation and the translation
parameters are provided by the ego-car odometry. |
is considered that the translations on the X and Y
axis are zero.

3.3 Data Association
This stage consists in finding the corresponding

contours that identify a single object in conseauti
frames. As each extracted contour describes an

For the polyline based object representation we USegeyation Map blob, finding the associated contour

the Border Scanner algorithm described by us in
(Vatavu, 2009). The main idea is that we are taking
into account only the most visible points from the
ego car and extract object delimiters by radial
scanning of the Elevation Map. Our method is
similar to a Ray-Casting approach. The proposed
method consists in determining the first occupied
point intersected by a virtual ray which extendsir
the ego-car position. The scanning axis movesen th
radial direction, having a fixed center at the ego-
vehicle position (the coordinate system origins). A
each step we try to find the nearest visible point
from the Ego Car situated on the scanning axis. In
this way, all subsequent ceRsare accumulated into
a Contour ListC, by moving the scanning axis in the
radial direction:

@

C={P,R,,..R)

For each objecD; described by a conto@; we
apply a polygonal approximation @&; by using a

pairs is reduced to find a similarity between the
object blobs.

For each objecP; from the previous frame and
for each objectC; from the current frame we
calculate an overlapping scofg. The results are
stored into a score matrik={A;}. Candidates with
the highest score are taken into account in
determining the associations between the two set of
objectsP andC.

However the association problem may lead only
to partial results in the cases when larger objects
from the previous frame are split into smaller tslob
in the current frame and vice versa. In order nal fi
all possible pairs of candidates we perform two
types of associations: a direct association (fodwar
association) finding best overlapping candidates in
the current frame for all blobs in the previousrig
and a reverse association (backward associatiah) th
finds best overlapped objects in the previous frame

split-and-merge technique described in (Douglas andfor all objects from the current frame. The finist |
Peuker’ 1973) The extracted p0|ygon is used to of candidates includes all distinct pairs assodiate
build a compact 3D model based on the polyline setthe two steps.

of vertices as well as on the object height. A gy
based representation is described in Figure 2.d.



Resulted Association List

Previous Frame with Distinct Candidates

| Current Frame

Direct Association
—_—

Inverse Assaociation
-

Figure 4: The association between two set of bloltbe
consecutive frames and the resulting set of aswutia
pairs.

4 MOTION ESTIMATION

1. Matching — for each point from data set, the
closest point from the model set is found. A lit o
correspondent pairs is generated.

2. Outliers Rejection — Rejecting the outliers that
could introduce a bias in the estimation of
translation and rotation.

3. Error Minimization estimating new
transformation parameter® and T for the next
iteration.

4. Updating — having the nevR andT, a new target
set is computed by applying the new transformation
to the model set. A global transformatidf, is
updated with the ne® andT values.

5. Testing the convergence- compute the average
point-to-point distance between the measurement set
and transformed model set. Then test if the
algorithm has been converged to a desired result.
the error is greater than a given threshold, the
process continues with a new iteration. The
algorithm stops when the computed error is below
the selected error threshold or when a maximum
number of iterations have been achieved.

Next we will detail each of these steps.

The object motion estimation module receives as4.1 Matching

input a list of associated contour pairs. For each

distinct pair we compute correspondences betweenat this stage, for each poigf from Q we want to
the two contours and estimate a rotation and afind the closest point from the model et

translation which minimize the alignment error. For
the contour pairwise registration we use the lieeat

= i 4
d(g,P)= min d(q.p;) @)

Closest Point (ICP) method. The ICP algorithm was Usually this task is the most computationally
proposed by Besl and McKay (Besl and McKay, exiensive in the ICP algorithm. The classical brute
1992) and represents a common solution especiallyfyrce  search approach has a complexity of

for scan-matching techniques, but the idea could be . . ;
adapted for any kind of models. O(N, [N _), with N, being the number of points

For each contour pair that identifies the same in P andN, — the number of points i. In order to
object in the consecutive frames we define tvaéet  reduce the complexity toO(Nq [dog N p) many

B (o ) tha describes - soutions cmploy a KD-Tree (Bentey 1975) cat
. ' . structure. In our case, for finding closest points

set Q:{‘Jl’% - G} that describes th? object problem, we use a modified version of Chamfer

contour in the current frame. For each pajirom based Distance Transform (Borgefors, 1984).

Q the corresponding closest pomfrom P is found. A distance transform represents a map that has

We lvva}nt t% finq an O%tim"’:! rotatiorR andh the property that each map cell has a value
trgns gtlorf]Tt at ”?'”('jm;.ze ;.e alignment error. The  .qhortional to the nearest obstacle point.
objective function 'z ehinead: In our case, for each separate model contour we
_ 2 define a region of interest and compute the digtanc
E(RT)=2[Rn+T-q 3)
i=1

transform. The difference of our solution is tha w
. . . use two maps: a distance map that store the

wherep, andg; are the corresponding point pairs
of the two sets and\ is the total number of

minimum distances to the closest points, and a

correspondence map, storing the positions of the
correﬁpondencez. i hod is d ibed b closest points (Figure 5). The correspondences from
the-ml‘—olfov%gg?ﬁginitlgggem method is described by e model set are identified by superimposing the
' data contour on the two masks.



Dynamic Obstacle

Static Obstacles Where z is the depth distancdy is the stereo
ik SR, & system baselind;is the focal length and7, denotes

the disparity error.
Thus, for each corresponding pair of poifgsy)
from the two sets, the rejection is made if:

d(g.,p;)>D, +o, 0

!

This would mean that the rejecting threshold is
increased at once with thzadistance.

4.2.2 Boundary Based Rejection

The second type of rejecting is filtering the point
correspondences caused by incomplete overlap
between contours. Usually, these situations appear
when one of the two contours is incompletely
extracted due to occlusions, and may lead to
incorrect alignments.

A possible solution is to identify the subsets of
points from Q that have the same correspondent
point p, in P, and keeping only the pair with the
minimum distance (Figure 6).
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Transform Mask
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Figure 5: Distance Transforms and Correspondingkslas
are computed for dynamic obstacles (left side), ford
static obstacles (right side). Data contours (ggr) and
model contours (white color) are superimposed am th
Distance Transform image. Each contour point in the
correspondence mask is labeled with a unique cdloe.
colors in the corresponding mask identify uniquéhe
closest contour point (having the same color).

4.2 Outliers Rejection Rejecting Q

. . . Figure 6: Rejecting the contour boundary.
The purpose of this stage is to filter erroneous
correspondences that could influence the alignment
process. We use two types of rejection strategies:
rejection of pairs whose point-to-point distance is
greater than a given threshold, and eliminating the
points where the overlap between the two contours

4.3 Error minimization

In this step we determine the optimal rotat®and
translationT by minimizing the objective function
defined by Equation (3).

is not complete. The rotation matrix around theY axis is
4.2.1 Distance Based Rejection linearized, approximating0<@ by 1 andsina by
a:
The classical strategy consists in rejection ofgai
whose point-to-point distance is larger than a mgive cosa O sina 1 0 «a
thresholdDy: ; S - R@= 0 1 o =[0 10 (8)
p.)>
(q"pl) t -sing 0 cosa| |-a 0 1
Because the stereo reconstruction error generally
increases with the square of the z distance, the The translation vector is defined as:
stereo-system uncertainties must be taken into
account. As suggested by (Danescu, 2012), if we t
assume that the stereo-vision system is rectified, x
then thez error is given by the following relation: T= ty 9
2
z° Lo, t
0’2 =- —7d (6) z
b Cf

We can rewrite the Equation (3) as:



2

N 1 0 a pivx tx qi,x
ERT)=2)1 0 1 0] p, +/t,|~|dy ]| (10)
= - 0 1 pi,z tz qi,z

TheE(R, T)is minimized with respect @, t, t,,
andt, by setting the partial derivatives to zero:

E(RT)
Jda
E(RT)
ot,
E(RT)
ot,
E(RT)
ot,

- ZZN: O’( piz‘x + pi%z) +ti.x pi‘z
i=1 _ti.z pi‘x _qi‘x pi‘z +qi‘z pi.x

(ti,x P tap, _qi,x) =0
;l
2t

2 (ti‘z+pi‘z_api‘x_qi‘z):0

=0

=z

=2

(11)

y + pi,y _qi.y):O

1
I

e

1
I

Therefore obtain the unknown

coefficients:

we can

a= 0

Gyt

N
Nz(plzx + piz,z) _(
i=1
N N

EEZ P> 0 —il Pi..

i=1 i=1

= e |-

Il
-

N

+N|:Z(qi,x pi,z)_
i=1

“1($q -
tx - N (;qlx

1 N

ty :N[;qi,y -

(g -
tz - N (;qlz

N

Z(qi,zpi,x)D

i=1

o
)

N
Z pi,y
i=1
N
Z pi,z +O’Z pi,x
i=1 i=1
Assuming that we have estimated new R and T
parameters in the previous step, a new targetsset i
computed by applying the new transformation to the
model set.
Having the rigid body transformation matik

(12)

4.4 Updating

1 0 ot
R T 0 1 0t
M= Y
0 1| |-a 0 1 t, (13)
0 0O

Each point p; from the model setP is

transformed according to the following relation:

k+1

pi,x 1 O a tX pi,x
Py | ] 0 10 tpl (14)
ptl |—a 0 1 t, | pf
1 0O 00 1| 1

Finally, a global transformatia¥ is updated:

Mg =Mg [M (15)

4.5 Testing the convergence

The error metric is estimated by computing the
average Euclidean distance (AED) of every
corresponding pair of data s& and transformed
model set.

1 N
Err =ﬁ2”pi -q
=

If the error is greater than a given threshold, the
process continues with a new iteration. The
algorithm stops when the computed error is below
the selected error threshold or when a maximum
number of iterations have been achieved.

(16)

5 EXPERIMENTAL RESULTS

The proposed dynamic environment representation
method has been tested in different traffic situai

For our experiment we used a 2.66GHz Intel Core 2
Duo Computer with 2GB of RAM. Figure 7 presents
some qualitative results obtained in a dynamic mirba
traffic scenario. In figure 7.b the model delimiter
that was extracted in previous frame is colorec wit
yellow, while the data contour (extracted in the
current frame) is drawn with blue. The result of th
alignment is illustrated with red color. It can be
observer that in the case of the incoming vehigte,
well as for the lateral static vehicles, the aligne
model is superimposed almost perfectly on the data
set. In the Figure 7.c, the virtual view of thersedés
shown. The static obstacles are represented with
green delimiters while the dynamic obstacles are
colored with red. The speed vectors are associated
the each dynamic entity (yellow color). The
representation result is also projected on the left



camera image (Figure 7.d). We considered that thepoints (blue color) and the alignment method that
obstacles with a speed greater than 8km/h areuses the Contour Boundary Rejection strategy (red

dynamic.

1 gl e —

Figure 7: a) An urban traffic scenario. b) The miligent
result (red color) between the model delimiter &sted in
previous frame (yellow) and the data contour, et&@ in
the current frame (blue). c) The virtual view oé thcene.
The static obstacles are represented with greemitksis
while the dynamic obstacles are colored with rede T
speed vectors are associated to each dynamic .endity
The representation result, projected on the lefheza
image.

color). We used the Average Euclidean Distance
(AED) as the error metric. It can be observed that
the ICP algorithm based on Boundary Rejection
strategy converge more quickly than the ICP method
without a filtering mechanism and proves to be more
accurate having a lower alignment error. For our
experiments we used a maximum number of 10
iterations. The average processing time was ak®ut 3
ms.

[ ‘e Error Without Rejecton ‘e Error Boundary Rejection |

AED

8
]
!
NEIY
o

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No lterations.

Figure 8: The computed Error Metric in the casdGi®
algorithm that does not use outlier rejection (bbador)

and ICP method that uses a Boundary Rejection (red
color).

6 CONCLUSIONS

In this paper we propose a method of real-time
representation of the dynamic environment by using
the pairwise alignment of free-form models. Instead
of registering the whole 3D point cloud, the most
visible obstacle points from the ego car are eshc
and are subjected to the alignment process. We
extend the classical ICP algorithm with a set of
preprocessing tasks. First, we associate the
delimiters at the blob level. Then, a list of asatex
candidates is passed to the alignment stage. Eor th
registration process we use free-form polygonal
models that minimize the erroneous results caused
by occlusions, or by stereo reconstruction errors.

As future work we propose to improve the
stability of the environment perception by extemgdin

Figure 8 shows a comparative result between the

ICP algorithm that includes all correspondence our system with a temporal filtering of the estigtht

speeds.
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