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Abstract: The detection of moving traffic participants is an essential intermediate step for higher level driving 
technology tasks. Regardless of the type of used sensors, dynamic environment modeling becomes even 
more difficult when the surrounding world is unstructured and heterogeneous. In such complex 
environments the representation system can be affected by noisy measurements, occlusions, wrong data 
association or unpredictable nature of the traffic participants. We propose a solution of representing the 
dynamic environment in real-time by using the pairwise alignment of free-form models and considering the 
advantages provided by a dense stereovision system. Instead of registering the whole 3D point cloud, our 
method is based on extracting and registering a more compact model of the environment taking into 
consideration the most visible object cells from the ego car. The proposed method is based on information 
provided by a Digital Elevation-Map, but can be easily adapted for other types of intermediate 
representations.   

1 INTRODUCTION 

In the context of Advanced Driver Assistance 
Systems, modeling static and dynamic entities of the 
environment is a key problem. The detection of 
moving traffic participants is an essential 
intermediate step for higher level driving technology 
tasks such as collision warning and avoidance, path 
planning or parking assistance. The problem of 
dynamic environment representation becomes even 
more difficult when the surrounding world is 
unstructured and heterogeneous, including the cases 
of crowded urban centers, traffic intersections or off-
road scenarios. The representation component may 
be influenced by several factors: noisy 
measurements, occlusions, wrong data association or 
unpredictable nature of the traffic participants. In 
such complex environments, a driver assistance 
system should be able to detect other moving traffic 
entities in real-time and at a high accuracy. 

Usually, the classic approaches of dynamic 
obstacles detection and tracking consist in extracting 
a set of features from the scene and estimating the 
motion from their displacement. Current solutions 

can directly use 3D points (Franke, 2005), or they 
can track high level attributes such as 2D boxes or 
3D cuboids (Danescu, 2007), stixels (Pfeiffer, 2010), 
free-form polygonal models (Wang, 2007), object 
contours (Prakash, 2007, Yokoyama, 2005) etc. 

The dynamic obstacle modeling solutions can be 
classified by the nature of used sensors. The most 
common used sensors are vision based (Danescu, 
2007), laser (Thomas, 2010, Madhavan, 2002), sonar 
(Fairfield, 2007) or radar. The motion estimation 
techniques are also distinguished by the level at 
which the dynamic features detection is applied. 
Some of the existing methods rely on computing 
motion before generating a model (Danescu, 2012, 
Hess, 2008), while other methods are based on 
extracting some attributes and subsequently 
estimating their dynamic parameters (Danescu, 
2007, Wang, 2007 and Prakash, 2007).  

Many of dynamic object detection solutions use 
intermediate representations as primary information. 
A common practice is mapping 3D information into 
occupancy grids (Danescu, 2012), digital elevation 
maps (Danescu, 2009) or octrees (Fairfield, 2007).  

The data association and identifying correct 
correspondences steps play an important role in 



 

estimating the motion of the traffic entities.  One of 
the widely used methods for model fitting in the 
presence of many data outliers is the RANSAC 
algorithm (Fischler, 1981).  However, its accuracy 
depends directly on the number of used samples. 
This may lead to a high computational cost. 

Direct matching solutions such as Iterative 
Closest Point (ICP) (Besl and McKay, 1992) 
algorithm are most common for vehicle localization 
and mapping (Wang, 2007). In (Rusinkiewicz, 2001) 
the convergence performance for several ICP 
variants is compared. An optimized ICP method that 
uses a constant time variant for finding the 
correspondences is presented.  In (Wang, 2007) a 
moving objects map is segmented by assuming that 
dynamic parts do not fulfill the constraints of the 
SLAM. However, the most of scan matching 
methods do not take into consideration the ego-
motion parameters. The data association of objects 
in subsequent scans is hard to be achieved when the 
traffic participants or the ego vehicle moves at high 
speeds or when the measurement uncertainties are 
not taken into account. 

We propose a solution of representing the 
dynamic environment in real-time by using the 
pairwise alignment of free-form delimiters and 
considering the advantages provided by a 
stereovision system, by inheriting the object 
information from the intermediate representation. 
Instead of registering the whole 3D point cloud, our 
method is based on extracting the most visible object 
cells from the ego car and using them as input data 
for the alignment process. We propose an extension 
of the classical ICP algorithm by applying a set of 
improvement heuristics: 
� The data association is one of the problems of 

the classical scan matching techniques. It’s 
hard to estimate the correspondent models 
from previous scans only based on the 
proximity criterion. In our case we introduce a 
pre-processing step. First, we find the 
correspondence pairs between the model set 
(contour extracted in previous frame) and the 
measurement set (current frame results) by 
finding similarities between object blobs and 
passing this information at the contour level. 
Then, a list of associated contour candidates is 
generated and is used as the input for the next 
steps of the alignment; 

� For the registration process we use free-form 
polygonal models that minimize the erroneous 
results caused by occlusions, or by stereo 
reconstruction errors. The main idea is that we 
are taking into account only the most visible 

points from the ego-vehicle by performing a 
radial scanning of the environment (Vatavu, 
2009); 

� The previously extracted speeds are used as 
the initial guess for the ICP algorithm; 

� In order to filter the alignment outliers, a 
rejection metric that includes stereo 
uncertainties is proposed; 

Our method is based on information provided by 
a Digital Elevation-Map, but can be easily adapted 
for other types of intermediate representations. 

The remaining of the paper is structured as 
follows: Section 2 introduces the architecture of the 
proposed dynamic environment representation. 
Section 3 presents the pre-processing module with a 
group of necessary tasks for extracting object 
dynamic properties. In section 4, the main steps of 
the motion estimation component are detailed. The 
last two sections show the experimental results and 
conclusion about this contribution. 

2 SYSTEM ARCHITECTURE 

The dynamic environment representation method 
has been developed and adapted for crowded 
environments such as urban city traffic scenes. In 
this paper we extend our previous Dense Stereo-
Based Object Recognition System (DESBOR) 
(Nedevschi, 2007). The system architecture could be 
divided in four main blocks: data acquisition and 3D 
reconstruction, intermediate representation, pre-
processing, and motion estimation. 
Data acquisition and 3D reconstruction is the first 
level of the processing flow. At this stage the images 
are acquired from the two cameras, then the 3D 
reconstruction is performed using a specialized 
TYZX (Woodill, 2004) board. The resulted point 
cloud is used as the input information for computing 
the Digital Elevation Map. 
Intermediate representation: the raw dense stereo 
information is mapped into a Digital Elevation Map. 
The resulted intermediate representation contains 
three types of cells: road, traffic isle and object. The 
cells are labeled based on their height information. 
More details about the Elevation Map are presented 
in (Oniga, 2010). 
Pre-processing: The pre-processing level groups a 
set of basic tasks that are performed prior the ICP 
algorithm. At this phase, the object contours are 
extracted by radial scanning of the Elevation Map. 
For the delimiters extraction we use the Border 
Scanner algorithm previously developed by us 
(Vatavu, 2009). We apply the ego-motion 



 

compensation for the Elevation Map and contours 
that are extracted in previous frame, assuming that 
we know the odometry information. The ego-vehicle 
motion is compensated in order to separate its speed 
from the independent motion of the objects in the 
traffic scene. Another pre-processing task is to 
associate the polygonal models. The data association 
is achieved by using the maximum overlapping 
score of the Elevation Map blobs. Considering that 
each polygonal model inherits the blob type, it also 
inherits the blob association information. 

 

Figure 1: System Architecture. 

   
Motion Estimation:  As the result of the pre-
processing level, a list of candidates is provided for 
the ICP module. Each candidate represents a pair of 
associated contours in the previous stage. For each 
candidate, a rotation and a translation is estimated by 
the ICP algorithm. Then the computed motion 
information is associated to the static polygonal 
models. A dynamic polyline map is generated as the 
result. Each polyline element is characterized by a 

set of vertices describing the polygon, position, 
height, type (traffic isle, obstacle), orientation and 
magnitude. 

In our case the two cameras are placed on a 
moving vehicle. We use a coordinate system where 
the z axis points toward the direction of the ego-
vehicle, and the x axis is oriented to the right. The 
origin of the coordinate system is situated in front of 
the car (Figure 3). 

3 PRE-PROCESSING LEVEL 

The pre-processing stage consists in performing 
necessary tasks prior the motion estimation. First, 
extracting a sufficiently generic model is needed. 
The extracted model should allow us the creation of 
fast subsequent algorithms and as well it should 
minimize the representation errors caused by noisy 
3D reconstruction or by occlusions. 
 

 

Figure 2: a) An urban traffic scene. b) The Elevation Map 
projected on the left camera image. d) The top view of the 
Elevation Map. The Elevation Map cells are classified 
(blue – road, yellow – traffic isle, red – obstacles). c) A 
compact representation of the environment. The extracted 
polygonal models are considered static. The extracted 
delimiters inherit the object information from the 
Elevation Map (green – obstacles, yellow – traffic isles). 

A second task is to separate the ego-vehicle 
speed from the independent motion of the other 
objects in the traffic scene. This is achieved by 
compensating the ego motion. 



 

And finally, elevation map blob is labeled and is 
used in data association. As the result a list of pairs 
of contours is extracted and is provided subsequently 
to the ICP step. Thus, unlike the other classical 
methods that involve aligning the whole local maps 
at once, and then segmenting the dynamic obstacles 
from the static ones, we first associate the obstacles 
at the blob level and then apply the ICP for each 
associated candidate. 

 

Figure 3: Coordinate System. 

3.1 Polyline-Based Environment 
Perception 

For the polyline based object representation we use 
the Border Scanner algorithm described by us in 
(Vatavu, 2009). The main idea is that we are taking 
into account only the most visible points from the 
ego car and extract object delimiters by radial 
scanning of the Elevation Map. Our method is 
similar to a Ray-Casting approach. The proposed 
method consists in determining the first occupied 
point intersected by a virtual ray which extends from 
the ego-car position. The scanning axis moves in the 
radial direction, having a fixed center at the ego-
vehicle position (the coordinate system origins). At 
each step we try to find the nearest visible point 
from the Ego Car situated on the scanning axis. In 
this way, all subsequent cells Pi are accumulated into 
a Contour List C, by moving the scanning axis in the 
radial direction: 

),...,{ 21 nPPPC =  (1) 

For each object Oi described by a contour Ci we 
apply a polygonal approximation of Ci by using a 
split-and-merge technique described in (Douglas and 
Peuker, 1973). The extracted polygon is used to 
build a compact 3D model based on the polyline set 
of vertices as well as on the object height. A polyline 
based representation is described in Figure 2.d. 

3.2 Ego-Motion Compensation 

Before estimating the motion of the traffic entities, 
the movement of the ego vehicle must also be taken 
into consideration. In order to compensate the ego 
motion in the successive frames, for each given 
point Pt-1(xt-1, yt-1, zt-1) in the previous frame, the 
corresponding coordinates Pt(xt, yt, zt) in the current 
frame are computed by applying the following 
transformation: 
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Where ( )ψyR  is the rotation matrix around the 

Y axis with a given angleψ , and tz  is the translation 

on the Z axis. The rotation and the translation 
parameters are provided by the ego-car odometry.  It 
is considered that the translations on the X and Y 
axis are zero. 

3.3 Data Association 

This stage consists in finding the corresponding 
contours that identify a single object in consecutive 
frames. As each extracted contour describes an 
Elevation Map blob, finding the associated contour 
pairs is reduced to find a similarity between the 
object blobs.  

For each object Pi from the previous frame and 
for each object Cj from the current frame we 
calculate an overlapping score Aij. The results are 
stored into a score matrix A={A ij}. Candidates with 
the highest score are taken into account in 
determining the associations between the two set of 
objects P and C.  

However the association problem may lead only 
to partial results in the cases when larger objects 
from the previous frame are split into smaller blobs 
in the current frame and vice versa. In order to find 
all possible pairs of candidates we perform two 
types of associations: a direct association (forward 
association) finding best overlapping candidates in 
the current frame for all blobs in the previous frame, 
and a reverse association (backward association) that 
finds best overlapped objects in the previous frame 
for all objects from the current frame. The final list 
of candidates includes all distinct pairs associated in 
the two steps. 



 

 

Figure 4: The association between two set of blobs in the 
consecutive frames and the resulting set of associated 
pairs.  

4 MOTION ESTIMATION 

The object motion estimation module receives as 
input a list of associated contour pairs. For each 
distinct pair we compute correspondences between 
the two contours and estimate a rotation and a 
translation which minimize the alignment error. For 
the contour pairwise registration we use the Iterative 
Closest Point (ICP) method. The ICP algorithm was 
proposed by Besl and McKay (Besl  and McKay, 
1992) and represents a common solution especially 
for scan-matching techniques, but the idea could be 
adapted for any kind of models.  

For each contour pair that identifies the same 
object in the consecutive frames we define two set of 
points: a model set P={p1,p2, ..., pM} that describes 
the object contour in the previous frame, and a data 
set Q={q1,q2, ..., qK} that describes the object 
contour in the current frame. For each point qj from 
Q the corresponding closest point pi from P is found. 
We want to find an optimal rotation R and 
translation T that minimize the alignment error. The 
objective function is defined: 
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where pi and qi are the corresponding point pairs 
of the two sets and N is the total number of 
correspondences. 

The proposed alignment method is described by 
the following main steps:  

1. Matching – for each point from data set, the 
closest point from the model set is found. A list of 
correspondent pairs is generated. 
2. Outliers Rejection – Rejecting the outliers that 
could introduce a bias in the estimation of 
translation and rotation.  
3. Error Minimization – estimating new 
transformation parameters R and T for the next 
iteration.   
4. Updating – having the new R and T, a new target 
set is computed by applying the new transformation 
to the model set. A global transformation Mg is 
updated with the new R and T values. 
5. Testing the convergence – compute the average 
point-to-point distance between the measurement set 
and transformed model set. Then test if the 
algorithm has been converged to a desired result.  If 
the error is greater than a given threshold, the 
process continues with a new iteration. The 
algorithm stops when the computed error is below 
the selected error threshold or when a maximum 
number of iterations have been achieved. 
Next we will detail each of these steps. 

4.1 Matching 

At this stage, for each point qi from Q we want to 
find the closest point from the model set P: 
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Usually this task is the most computationally 
extensive in the ICP algorithm. The classical brute 
force search approach has a complexity of

)( pq NNO ⋅ , with Np being the number of points 

in P and Nq – the number of points in Q. In order to 

reduce the complexity to )log( pq NNO ⋅ many 

solutions employ a KD-Tree (Bentley, 1975) data 
structure. In our case, for finding closest points 
problem, we use a modified version of Chamfer 
based Distance Transform (Borgefors, 1984).  

A distance transform represents a map that has 
the property that each map cell has a value 
proportional to the nearest obstacle point.  

In our case, for each separate model contour we 
define a region of interest and compute the distance 
transform. The difference of our solution is that we 
use two maps: a distance map that store the 
minimum distances to the closest points, and a 
correspondence map, storing the positions of the 
closest points (Figure 5). The correspondences from 
the model set are identified by superimposing the 
data contour on the two masks. 



 

 

Figure 5: Distance Transforms and Corresponding Masks 
are computed for dynamic obstacles (left side), and for 
static obstacles (right side). Data contours (gray color) and 
model contours (white color) are superimposed on the 
Distance Transform image. Each contour point in the 
correspondence mask is labeled with a unique color. The 
colors in the corresponding mask identify uniquely the 
closest contour point (having the same color). 

4.2 Outliers Rejection 

The purpose of this stage is to filter erroneous 
correspondences that could influence the alignment 
process. We use two types of rejection strategies: 
rejection of pairs whose point-to-point distance is 
greater than a given threshold, and eliminating the 
points where the overlap between the two contours 
is not complete. 

4.2.1 Distance Based Rejection 

The classical strategy consists in rejection of pairs 
whose point-to-point distance is larger than a given 
threshold Dt: 

tji Dpqd >),(
 

(5) 

Because the stereo reconstruction error generally 
increases with the square of the z distance, the 
stereo-system uncertainties must be taken into 
account. As suggested by (Danescu, 2012), if we 
assume that the stereo-vision system is rectified, 
then the z error is given by the following relation: 
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Where z is the depth distance, b is the stereo 

system baseline; f is the focal length and dσ denotes 

the disparity error.  
Thus, for each corresponding pair of points (pi,qi) 

from the two sets, the rejection is made if: 

ztji Dpqd σ+>),(
 

(7) 

This would mean that the rejecting threshold is 
increased at once with the z distance. 

4.2.2 Boundary Based Rejection 

The second type of rejecting is filtering the point 
correspondences caused by incomplete overlap 
between contours. Usually, these situations appear 
when one of the two contours is incompletely 
extracted due to occlusions, and may lead to 
incorrect alignments.  

A possible solution is to identify the subsets of 
points from Q that have the same correspondent 
point pj in P, and keeping only the pair with the 
minimum distance (Figure 6). 

 

Figure 6: Rejecting the contour boundary. 

4.3 Error minimization  

In this step we determine the optimal rotation R and 
translation T by minimizing the objective function 
defined by Equation (3). 

The rotation matrix around the Y axis is 
linearized, approximating αcos  by 1 and αsin by
α : 
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The translation vector is defined as: 
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We can rewrite the Equation (3) as: 
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The ),( TRE is minimized with respect toα , tx, ty, 

and tz by setting the partial derivatives to zero: 
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Therefore we can obtain the unknown 
coefficients: 
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4.4 Updating 

Assuming that we have estimated new R and T 
parameters in the previous step, a new target set is 
computed by applying the new transformation to the 
model set.  

Having the rigid body transformation matrix M: 
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Each point pi from the model set P is 

transformed according to the following relation: 
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 Finally, a global transformation MG is updated:  
 

MMM GG ⋅=
 

 

(15) 

4.5 Testing the convergence 

The error metric is estimated by computing the 
average Euclidean distance (AED) of every 
corresponding pair of data set Q and transformed 
model set. 
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If the error is greater than a given threshold, the 
process continues with a new iteration. The 
algorithm stops when the computed error is below 
the selected error threshold or when a maximum 
number of iterations have been achieved. 

5 EXPERIMENTAL RESULTS 

The proposed dynamic environment representation 
method has been tested in different traffic situations. 
For our experiment we used a 2.66GHz Intel Core 2 
Duo Computer with 2GB of RAM. Figure 7 presents 
some qualitative results obtained in a dynamic urban 
traffic scenario. In figure 7.b the model delimiter 
that was extracted in previous frame is colored with 
yellow, while the data contour (extracted in the 
current frame) is drawn with blue. The result of the 
alignment is illustrated with red color. It can be 
observer that in the case of the incoming vehicle, as 
well as for the lateral static vehicles, the aligned 
model is superimposed almost perfectly on the data 
set. In the Figure 7.c, the virtual view of the scene is 
shown. The static obstacles are represented with 
green delimiters while the dynamic obstacles are 
colored with red. The speed vectors are associated to 
the each dynamic entity (yellow color).  The 
representation result is also projected on the left 



 

camera image (Figure 7.d). We considered that the 
obstacles with a speed greater than 8km/h are 
dynamic.  

 

Figure 7: a) An urban traffic scenario. b) The alignment 
result (red color) between the model delimiter extracted in 
previous frame (yellow) and the data contour, extracted in 
the current frame (blue). c) The virtual view of the scene. 
The static obstacles are represented with green delimiters 
while the dynamic obstacles are colored with red. The 
speed vectors are associated to each dynamic entity.  d) 
The representation result, projected on the left camera 
image. 

Figure 8 shows a comparative result between the 
ICP algorithm that includes all correspondence 

points (blue color) and the alignment method that 
uses the Contour Boundary Rejection strategy (red 
color). We used the Average Euclidean Distance 
(AED) as the error metric. It can be observed that 
the ICP algorithm based on Boundary Rejection 
strategy converge more quickly than the ICP method 
without a filtering mechanism and proves to be more 
accurate having a lower alignment error. For our 
experiments we used a maximum number of 10 
iterations. The average processing time was about 38 
ms. 

 

Figure 8: The computed Error Metric in the case of ICP 
algorithm that does not use outlier rejection (blue color) 
and ICP method that uses a Boundary Rejection (red 
color).  

6 CONCLUSIONS 

In this paper we propose a method of real-time 
representation of the dynamic environment by using 
the pairwise alignment of free-form models. Instead 
of registering the whole 3D point cloud, the most 
visible obstacle points from the ego car are extracted 
and are subjected to the alignment process. We 
extend the classical ICP algorithm with a set of 
preprocessing tasks. First, we associate the 
delimiters at the blob level. Then, a list of associated 
candidates is passed to the alignment stage. For the 
registration process we use free-form polygonal 
models that minimize the erroneous results caused 
by occlusions, or by stereo reconstruction errors.  

As future work we propose to improve the 
stability of the environment perception by extending 
our system with a temporal filtering of the estimated 
speeds.  
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