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Abstract—We propose an environment representation technique The polyline object representation may lead to thate

by Temporal Analysis of the Occupancy Grid using aDense
Stereo-Vision System. The proposed method takes intaccount
both the 3D information provided by the Occupancy Gid and
the ego-car parameters. We use a method for compag the
differences between the previous and current framesand
compute an evidence space called Occupancy Grid Eifence
Map. Based on the difference map we created a reasng
component to generate an improved 2.5D model by regsenting
the environment as a set of polylines with the assiated static
and dynamic features.

Keywor ds-environment representation; stereovision; difference
map; occupancy grid; temporal difference; poligonal model;

. INTRODUCTION

of subsequent algorithms that are computationally fast due to
the fact that only a small subset of points is employed.

The road feature identification through the object dedirsi
detection can be used in the unstructured environments as an
alternative solution to the lane detection algorithms.

The object delimiters extraction is studied in some areas
like mobile robots [4], [5], [6], [7], [8] or autonoous vehicle
systems [9], [10], [11]. The polyline representatianviery
common in many algorithms, such as localization and mapping
[6], [7], [8], [10] contour tracking [12] and path plannifid].

The polyline extraction methods differ by the nature of the
information as well as by the sensors used for data didguis
process. Current systems use laser [4], [8], [9].,[4@par [11],

One of the main challenges when working in the field of./] Or vision sensors [11].

autonomous  navigation is the digital ~environment A method for map representation as a set of line segme
representation [17]. The environment modeling processchas by polylines is described in [7]. An occupancy grid is tzea
be accurate and characterized by a low computational CO$fere from sonar information. The data is convertea list of

However, the performances achieved in complex dynamigertices using the Douglas Peucker line reduction ifgor
environments such as crowded city traffic scenarios tfe s

unsatisfactory. Therefore, an Advanced Driver Assiganc In [8] a method that learns sets of polylines from laser
Systems must include an environment representatiof@nge information is presented. The polylines arentitely
component, able to advise the driver and provide appropria@Ptimized using the Bayesian Information Criterion.
info_rmr_:ltion al_)out both its static and dynamic envir_onment, The polyline representation was chosen in [10] farater
achieving a high level of accuracy, confidence, andte®  5igeq |ocalization of autonomous vehicle. The new range dat
capability. obtained from the sensor are integrated into the polytiap

Usually, the Driving Assistance Applications detect theby attaching line segments to the end of the polylinehas
objects through 2D or 3D points grouping processes. Theehicle moves gradually along the tunnel.

detected objects are represented by geometric prisigueh In [16] a vehicle detection algori ;
X X gorithm using laser range
as 2D bounding boxes [2] or 3D cuboids [3] [13]. AS angngers is described. The notion of motion evidence is

alternative approach, the objects may be represented Ryosented which allows the dynamic obstacle detection.
polylines. One of the advantages of the polyline basedtsbje

representation is the close approximation of the objemtoar In our previous work [1] we presented and evaluated

by the polygonal model while having a number of vertices aseveral methods for real-time environment representdtio

small as possible. In the same time the polyline could iinherextracting object delimiters from the traffic scenesngsa

the type, position, height properties, and dynamic featofes Dense Stereovision System [3]. The delimiters detectias w

the associated object. based on processing the information provided by a 3D
classified occupancy grid obtained from the raw denseostere
information. Two approaches to extract object deliritgere
presented: an improved contour tracing called 3A Tra@nd,



a polyline extraction method through the radial scanafrihe Left Camera Right Camera
occupancy grid called Border Scanning.

In this paper we extend our system from [1] with a mgvi
obstacle detection and representation technique by Temporal
Analysis of the Occupancy Grid using a Dense Stere@Visi Y
System. The proposed algorithm takes in account both the 3D
information provided by the Occupancy Grid and ego-car
parameters. TYZX Hardware
Stereo Machine

We use a method for computing the differences betwegn
the previous and current frames and generate an evidenee spac
called Occupancy Grid Difference Map. A problem in using v
the Temporal Difference approach is that object foares
influenced by the occluded points as well as by the dynam|c Reconstructed 3D Points
nature of traffic scenes. For this we developed ehatethat
does not take into consideration the occluded points Ry ;
exploring the Difference Map through the radial scanning. e

Finally, we compute circular histograms from object
difference fronts in order to calculate object resultirgctions 3
and to separate obstacles into static and dynamic abstacl |
Kalman filtering is employed for tracking these features. s e

Occupancy Grid Occupancy Grid
at time t-1 attime t

As the result an improved 2.5D model is computed b Ego Car -
representing the environment as a set of polylines vhigh t Parameters | Ego Motion Occupancy Grid
following associated static and dynamic features: a dfst ™ Compensation . Temporal
vertices, the delimiter type (object/curb, moving obstkstatic Difference
obstacle), the object height, Occupancy Grid blobs’ featurgs
(center of mass, axis of elongation), and the dynamitiries
(a motion vector associated to the moving obstacle). ¥

In the next section, we describe the proposed System Static and Moving Object
Architecture. The Temporal Analysis of the Occupancy Grig Delimiters Detection
technique is presented in section Ill. The last twocesshow
the experimental results and conclusion about the Environment Y

Representation System we have developed.
Output
Il.  SYSTEM ARCHITECTURE
Our Environment Representation System has been Figure 1. System Architecture
developed for an urban driving assistance system. Véadod
our Dense Stereo-Based Object Recognition Systemepresented as a digital elevation map (see Fig. 2.b). The
(DESBOR) by developing a representation component bgccupancy grid cells are classified into road, traifie and

Temporal Analysis of the Occupancy Grid. A detailedobject cells. A detailed description about the occupanay gri
description about the DESBOR system is presented in [3].  computation is presented in [15].

The Environment Representation system architectureD

consists in the following modules (see Fig. 1): . Ego Motion Compensation
At each frame we keep the Occupancy Grid generated at
A. TYZX Hardware Sereo Machine the previous frame. The Occupancy Grid coordinates fram

revious frame are transformed to the current frarssyraing

he ego motion parameters are known. By applying the ego
motion compensation we ensure that the coordinatensysié
the two occupancy grids are aligned.

The 3D reconstruction is performed by hardware,
specialized PCI board (“TYZX") [14].

B. Reconstructed 3D Points

The reconstructed 3D points are used for the occupangy  occupancy Grid Temporal Difference

grid generation. We use an original method for calculating the difference

. . between the two frames by radial scanning of the occupancy
C. Occupancy Grid C(_)mputanor.l __grids. Each cell from the current occupancy grid is astat

The occupancy grid (see Fig. 2.c) represents a descriptiatith the corresponding cell from the previous frame.
of the scene, computed from the raw dense stereo iafnm  Depending on the presence or absence of a cell in the two



2.
b) c) 3.
Figure 2. The Occupancy Grid (c) is computed from the Eleratlap (b)
of a scene (a). The occupancy grid cells are rquglalssified (blue — road,
yellow — traffic isle, red — obstacles) 4

frames, we generate a specific label for it. As sulte we
obtain so-called difference fronts that characterize ngpvi
objects between two frames. For each moving object,teomo
vector is calculated by using the difference fronts as the
relevant information. Each motion vector is describgditb
orientation and magnitude.

F. Object Delimiters detection
The Object Delimiters detection uses as the input the

occupancy grid information and the results provided by de.

Temporal Difference module, generating a set of unstred
polygons approximated with the objects contour. Each polyline
inherits from the associated objects the static a$ agethe

dynamic features. For Delimiters Extraction we used the
Border Scanning algorithm presented in [1].

G. Environment Representation Output
A polyline map is generated as the result of delimiter

extraction and temporal difference analysis. For eacHipely ca

element we keep the following information:
« A setof vertices that describe the polygon.

* Object features: Center of Mass, Axis of Elongation,
and Height.

 Type of the associated obstacle: Static or Moving
obstacle, Object delimiter or Curb delimiter

* Dynamic Features: Orientation and Magnitude.

. TEMPORALANALYSIS OF THEOCCUPANCY GRID

object labels are subsequently used for object association
in consecutive frames.

Ego Motion Compensation. The Ego Motion is
compensated between successive frames in order to align
the two Occupancy Grid coordinate systems. Coordinates
from the previous frame are transformed straightforward
into the current reference frame by a rotation and a
translation assuming the ego car odometrical parameters
are known.

Difference Map Computation. For each cell a
corresponding flag is assigned (direction, shadow, and
core) by comparing the previous and current occupancy
grid.

Circular Histogram Generation and Interpretation. In

this step we compute a circular histogram for eagbcob
from the Occupancy Grid by radial scanning of the
Difference Map. Using circular histogram (also known as
polar histogram) we generate a distribution model for
moving object differences. We call these differenaes
front differences because usually they are clustered into a
single front (Fig. 2.). The mean direction of an oblgtas
estimated by using vector addition for all components
accumulated into the histogram.

Discrimination between static and dynamic obstacles.
For each moving object we compute a motion score
knowing its Center of Mass Difference in successive
frames and its Dominant Vector Magnitude.

Next we detail the main stages of the Occupancy Grid

Temporal Analysis.

A. Ego Motion Compensation

To compensate the ego motion in the successive fraares, f
ch given poinPy (X1, Yi1, Zg) in the previous frame the
corresponding coordinat®(X;, Y;, Z,) in the current frame are
computed by applying a rotation and a translation:

T T

X, Xia 0
Y, | =R@) Y. | + 0 )
Zt Zt—l Tz

Where:

Ry (l//) — is the rotation matrix around the Y axis with a

We use the occupancy grid temporal analysis to keep agiven anglé/ .

evidence of the occupancy grid cells and to detect difte®
both at the cell level, and the object level by computingp

called map of the difference. Based on the difference weap
created a reasoning to detect static and dynamicaabst
features.

The Temporal Analysis of The Occupancy Grid (TAOG)
approach consists in the following steps:

1. Object Labeling. In this step each object from the
Occupancy Grid is labeled with a unique identifier. The

T, — is the point translation on the Z axis. It is considered
that the translations on the X, Y axis are zero.

B. Difference Map Computation

For each cell in the previous frame we keep an evidehce

its persistence at the corresponding position. Thus, loastt
presence or absence of the cell in the current fraeleuild a



Difference Map that stores the point differences intihe A
frames.

A given cell in a certain position in the difference magym

belong to the following categories: Obstacle

Core
Core cell — if the same cell is occupied in the both of the
frames.

Direction

Front
Moving ron

Direction cell — if a cell is empty in the previous frame, and Diroct
irection

occupied in the current frame.

Shadow cell — the cells that are occupied in the previous fram
and are empty in the current frame at the corresponding
position.

1%

We use different flags for all of these categories. X

\

There are cases when the same cell is occupied
successive frames by different objects (obstacleaffidrisle). ®
This is due to the Occupancy Grid noise or to the dynam EdoiCar
nature of the environment. In this case we take intowmco
only the PerS'Stence of the ObStades, (n.Ot traﬁ'(,: isTEis can Figure 3. In a Difference Map, we have two types of differerfronts that
be explained by the fact that the traffic isles artcstalated t0  characterize moving objects between two frameshéndirection front (with

the road surface while we focus on the dynamic objetdifes.  blue) the occupancy grid cells are present in tireeat frame but are empty
o in the previous frame, the shadow front flags talisahat are empty in the
We must note that the obstacle association is lintifethe  current frame but are filled in the previous one

obstacle velocity. The higher the object speed, the snialké
overlapped surface of an object in successive frammseter, forms are influenced by the occluded points as well athéy
the data acquisition is made at a frame rate of 2(fpss, for ~ dynamic nature of traffic scenes.

an 3 meters long and 2 meters wide obstacle, that hdscitye
of 50km/h (generally this is the speed limit in ambareas), the
overlapped surface in the consecutive frames is about 77
This is more than enough for our approach, and even fbehig
speeds the overlapping is achieved.

]

[g)

For this we developed a technique that doesn’t take into
onsideration occluded points by radial scanning of the
ifference Map. The result of this scanning is a polygona

model of the environment with the obstacle dynamic features
associated to it.

After the computation of the difference map we observe
that the dynamic obstacles are characterized by thpes tyf
areas (see Fig. 3): a direction front (the directiothefmoving
obstacles), a shadow front (usually located behind thengovi
obstacles), and a core area that remains unchanged in the A
consecutive frames.

In this approach the scanning axis moves in the radial
direction, having a fixed center at the Ego Car positiog. @).

Further, in this work we will use this information to
compute the movement direction of the car through th
creation and interpretation of circular histograms éach »Cm
object. g

1]

Circular Histogram
Computation

C. Circular Histogram Generation and Inter pretation

In this phase, for each object from the Temporalddéhce
Map, we calculate a dominant direction vector that ig
characterized by an orientation and a magnitude. The idean
consists in gathering a set of circular measuremeots f L
difference fronts and storing them into an angular histogra ||/ RadalScamning
(also known as circular histogram or polar histogramlusTh Vo
for a point situated at the object boundary we accumuit
the difference points (direction, and shadow) in a circular
histogram by moving along a ray towards the object cenfter
mass. The generated data sample in the histogram wélthav -
same angle as the orientation of the processed ray. P(xStart,zStart)

v

The problem of this approach is that it's hard to kee;l):, 4 A lating the diff ints that fall inthet circul

evidence from the previous frame to the current onegusec , oure = Accumuiaiing the diierence points that fafl inthet circuiar
L . . . histogram associated to an object.

of the new information that influences the object shape. The

object



The scanning process is made within the limits of tiverg
angles, thus only the interest area is scanned, whembjhet
delimiters can be detected. Having a radial axis witlivan
slope we try to find the nearest Object point from tige Ear
situated on this axis. In this way, all subsequent peiitde
accumulated into &€ontour List, moving the scanning axis in
the radial direction. Once a poiRtof an objectO is found
(Fig. 4) we accumulate all the difference points sitiate the
axis that connect the poiftand the center of mass, of the
objectO.

I =(R, R) — the mean direction vector, which actually
encodes the speed and the direction of movement.

For each new obstacle (that has no associated obsiacles
previous frames) a new tracker is initialized. If thestacle has
an associated obstacle in the previous frame, then the
associated tracker is wupdated with the current frame
measurements and the state of the obstacle is estibvaged
on the current measurements. The measurement covariance
matrix R is computed based on the stereo uncertainty model
described in [15]. The localization uncertainty is eatid

The accumulated points form a direction vector that igonsidering the stereo system parameters and a disparity

stored into a circular histogram associated to thecola).

The mean direction of an obstacle is estimated by usin

vector addition for all components accumulated into th
histogram. Given a set of individual vectors with a dicect),

and a magnitud®l;, The mean directior@ is ocmputed by the
following formula:
6= atan2(R, Ry). o)

Where:

R =3 M,cos6). R, =Y M,sin@).

R*=R*+R%. (4)
The magnitude of the mean vector is defined by:
o1
7l ==VR:+R:. (5)

n

Where n is the number of individual vectors from the
histogram. In our experiments we uRe(equation 4) as the
magnitude of the mean vector.

Fig.5.b shows the circular histograms (colored witmgeg

and the corresponding mean directions (colored with red)

associated to the moving obstacles.

D. Obstacletracking

Each obstacle (non traffic isle) is tracked in order t
compute its filtered position and speed, which will allow
further the discrimination between static and dynami
obstacles.

A standard Kalman filter is employed in order to estenat
the state of each obstacle:

(6)

where:

Xm Zm are the coordinates of the obstacle mass cépter

uncertainty of a quarter of a pixel. The process covariance
atrix Q is estimated considering a certain covaridocehe
bstacles’ acceleration.

IV. EXPERIMENTAL RESULTS
For the experimental results we tested a set of 10 sognar

form crowded urban environments using a 2.66GHz Intel Core

2 Duo Computer with 2GB of RAM.

Fig. 6 shows the Temporal Difference results (see Fg. 6
for the traffic scene from Fig. 6.a. The OccupancydGsee
Fig. 6.b) is computed from scene (a). The temporal @ifiles
(Fig. 6.e) uses the previous occupancy grid (Fig. 6.cected
with the ego motion, and the current occupancy grig. (&id).
The Temporal Difference Maps Cells are classifiedhiadew
cells (magenta), direction cells (blue), traffic iskme cells
(yellow), and obstacles core cells (light green)

It can be observed in the Temporal Difference Map (Fig.
6.e) that despite the static nature of the traffiesiste obtain a
shadow front at the Difference Map extremities. This isttlae
fact that after compensating the previous frame withete
motion we obtain cells that have no correspondence in the
previous frame. Therefore, shadow fronts are formed at the
bottom of the Difference Map while direction fronts arerfed
at the top of the map. As a solution, we can use a Redion o
Interest for the processing algorithms.

The environment representation accuracy depends on the
3D reconstruction accuracy as well as on the results movid
by the Occupancy Grid

Fig. 7 Shows the Environment Representation result in
rban Driving Scenarios.

b)

Figure 5. Difference Map (b) of the scene (a). Circular hisémgs (colored
with orange) are computed. The mean directionsofedl with red) are
associated to the corresponding moving obstacles.



Figure 7. Dynamic Environment Representation.

We use a method for computing the differences between
the two frames and generate an evidence space -called
Occupancy Grid Difference Map. A problem in using the
Temporal Difference approach is that object forms are
influenced by the occluded points as well as by the dynamic
) d) e) nature of traffic scenes. For this we developed a teabrtitat
doesn’'t take into consideration occluded points by radial

Figure 6. Temporal Difference. The Occupancy Grid (b) is cated from scanning of the Difference Map.

scene (a). The temporal difference (e) uses theiqu® occupancy grid (c) We extend our prev|ous Border Scannlng algorlthm [l] by

corrected with the ego motion, and the current paogy grid (d). The f . : :
Temporal Difference Maps Cells are classified indsiva cells (magenta), detecting moving obstacles difference fronts and cafigcti

direction cells (blue), traffic isles core cellelpw), and obstacles core cells them '”tQ circular hlstograms, associated to eachcbbje
(light green) use the histogram circular measurements to computelléargs

direction vector and to separate obstacles into statid
Difference maps are presented on the left side. €tecttd dynamic obstacles.

Object Delimiters are shown in the Virtual View of tBeene
(middle) and are projected onto the Left Camera Imé&géat(
side). The Object Delimiters are represented as gilusdd as
Traffic Isles (orange), Static Objects (light greergnd
Dynamic Objects (red). It can be observed that the movin
obstacles have an associated direction representedoaareye
line.

As the result an improved 2.5D model is computed by
representing the environment as a set of polylines with the
associated static and dynamic features such as ctibsta

irection characterized by an orientation and a magnituge, ty
f the associated obstacle (Static or Moving obstaahgect,
Curb), a list of vertices, obstacle height etc.

As future work we propose to focus our research in
V. CONCLUSIONS improving the accuracy of the Environment Representation.

In this paper we develop a new technique for dynamic
obstacles detection and representation using a Dense REFERENCES
Stereovision System.
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