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Abstract—We propose an environment representation technique 
by Temporal Analysis of the Occupancy Grid using a Dense 
Stereo-Vision System. The proposed method takes into account 
both the 3D information provided by the Occupancy Grid and 
the ego-car parameters. We use a method for computing the 
differences between the previous and current frames and 
compute an evidence space called Occupancy Grid Difference 
Map. Based on the difference map we created a reasoning 
component to generate an improved 2.5D model by representing 
the environment as a set of polylines with the associated static 
and dynamic features. 

Keywords-environment representation; stereovision; difference 
map; occupancy grid; temporal difference; poligonal model;   

I.  INTRODUCTION  

One of the main challenges when working in the field of 
autonomous navigation is the digital environment 
representation [17]. The environment modeling process has to 
be accurate and characterized by a low computational cost. 
However, the performances achieved in complex dynamic 
environments such as crowded city traffic scenarios are still 
unsatisfactory. Therefore, an Advanced Driver Assistance 
Systems must include an environment representation 
component, able to advise the driver and provide appropriate 
information about both its static and dynamic environment, 
achieving a high level of accuracy, confidence, and real-time 
capability. 

Usually, the Driving Assistance Applications detect the 
objects through 2D or 3D points grouping processes. The 
detected objects are represented by geometric primitives such 
as 2D bounding boxes [2] or 3D cuboids [3] [13]. As an 
alternative approach, the objects may be represented by 
polylines. One of the advantages of the polyline based objects 
representation is the close approximation of the object contour 
by the polygonal model while having a number of vertices as 
small as possible. In the same time the polyline could inherit 
the type, position, height properties, and dynamic features of 
the associated object. 

The polyline object representation may lead to the creation 
of subsequent algorithms that are computationally fast due to 
the fact that only a small subset of points is employed. 

The road feature identification through the object delimiters 
detection can be used in the unstructured environments as an 
alternative solution to the lane detection algorithms. 

The object delimiters extraction is studied in some areas 
like mobile robots [4], [5], [6], [7], [8] or autonomous vehicle 
systems [9], [10], [11]. The polyline representation is very 
common in many algorithms, such as localization and mapping 
[6], [7], [8], [10] contour tracking [12] and path planning [10]. 

The polyline extraction methods differ by the nature of the 
information as well as by the sensors used for data acquisition 
process. Current systems use laser [4], [8], [9], [10], sonar [11], 
[7] or vision sensors [11]. 

A method for map representation as a set of line segments 
or polylines is described in [7]. An occupancy grid is created 
here from sonar information. The data is converted to a list of 
vertices using the Douglas Peucker line reduction algorithm. 

In [8] a method that learns sets of polylines from laser 
range information is presented. The polylines are iteratively 
optimized using the Bayesian Information Criterion. 

The polyline representation was chosen in [10] for terrain-
aided localization of autonomous vehicle. The new range data 
obtained from the sensor are integrated into the polyline map 
by attaching line segments to the end of the polyline as the 
vehicle moves gradually along the tunnel. 

In [16] a vehicle detection algorithm using laser range 
finders is described. The notion of motion evidence is 
presented which allows the dynamic obstacle detection. 

In our previous work [1] we presented and evaluated 
several methods for real-time environment representation by 
extracting object delimiters from the traffic scenes using a 
Dense Stereovision System [3]. The delimiters detection was 
based on processing the information provided by a 3D 
classified occupancy grid obtained from the raw dense stereo 
information. Two approaches to extract object delimiters were 
presented: an improved contour tracing called 3A Tracing, and 



 

a polyline extraction method through the radial scanning of the 
occupancy grid called Border Scanning. 

In this paper we extend our system from [1] with a moving 
obstacle detection and representation technique by Temporal 
Analysis of the Occupancy Grid using a Dense Stereo-Vision 
System. The proposed algorithm takes in account both the 3D 
information provided by the Occupancy Grid and ego-car 
parameters.  

We use a method for computing the differences between 
the previous and current frames and generate an evidence space 
called Occupancy Grid Difference Map. A problem in using 
the Temporal Difference approach is that object forms are 
influenced by the occluded points as well as by the dynamic 
nature of traffic scenes. For this we developed a method that 
does not take into consideration the occluded points by 
exploring the Difference Map through the radial scanning. 

Finally, we compute circular histograms from object 
difference fronts in order to calculate object resultant directions 
and to separate obstacles into static and dynamic obstacles. 
Kalman filtering is employed for tracking these features. 

As the result an improved 2.5D model is computed by 
representing the environment as a set of polylines with the 
following associated static and dynamic features: a list of 
vertices, the delimiter type (object/curb, moving obstacle/static 
obstacle), the object height, Occupancy Grid blobs’ features 
(center of mass, axis of elongation), and the dynamic features 
(a motion vector associated to the moving obstacle). 

In the next section, we describe the proposed System 
Architecture. The Temporal Analysis of the Occupancy Grid 
technique is presented in section III. The last two sections show 
the experimental results and conclusion about the Environment 
Representation System we have developed. 

II.  SYSTEM ARCHITECTURE 

Our Environment Representation System has been 
developed for an urban driving assistance system. We extended 
our Dense Stereo-Based Object Recognition System 
(DESBOR) by developing a representation component by 
Temporal Analysis of the Occupancy Grid. A detailed 
description about the DESBOR system is presented in [3].  

The Environment Representation system architecture 
consists in the following modules (see Fig. 1): 

A. TYZX Hardware Stereo Machine 

The 3D reconstruction is performed by hardware, a 
specialized PCI board (“TYZX”) [14]. 

B. Reconstructed 3D Points 

The reconstructed 3D points are used for the occupancy 
grid generation. 

C. Occupancy Grid Computation 

The occupancy grid (see Fig. 2.c) represents a description 
of the scene, computed from the raw dense stereo information  

Figure 1.  System Architecture 

represented as a digital elevation map (see Fig. 2.b). The 
occupancy grid cells are classified into road, traffic isle and 
object cells. A detailed description about the occupancy grid 
computation is presented in [15]. 

D. Ego Motion Compensation 

At each frame we keep the Occupancy Grid generated at 
the previous frame. The Occupancy Grid coordinates from the 
previous frame are transformed to the current frame, assuming 
the ego motion parameters are known. By applying the ego 
motion compensation we ensure that the coordinate systems of 
the two occupancy grids are aligned. 

E. Occupancy Grid Temporal Difference 

We use an original method for calculating the differences 
between the two frames by radial scanning of the occupancy 
grids. Each cell from the current occupancy grid is associated 
with the corresponding cell from the previous frame. 
Depending on the presence or absence of a cell in the two  



 

Figure 2.  The Occupancy Grid (c) is computed from the Elevation Map (b) 
of a scene (a). The occupancy grid cells are roughly classified (blue – road, 
yellow – traffic isle, red – obstacles) 

frames, we generate a specific label for it. As a result, we 
obtain so-called difference fronts that characterize moving 
objects between two frames. For each moving object, a motion 
vector is calculated by using the difference fronts as the 
relevant information. Each motion vector is described by its 
orientation and magnitude.  

F. Object Delimiters detection 

The Object Delimiters detection uses as the input the 
occupancy grid information and the results provided by de 
Temporal Difference module, generating a set of unstructured 
polygons approximated with the objects contour. Each polyline 
inherits from the associated objects the static as well as the 
dynamic features. For Delimiters Extraction we used the 
Border Scanning algorithm presented in [1]. 

G. Environment Representation Output 

A polyline map is generated as the result of delimiters 
extraction and temporal difference analysis. For each polyline 
element we keep the following information:  

• A set of vertices that describe the polygon. 

• Object features: Center of Mass, Axis of Elongation, 
and Height. 

• Type of the associated obstacle: Static or Moving 
obstacle, Object delimiter or Curb delimiter 

• Dynamic Features: Orientation and Magnitude. 

III.  TEMPORAL ANALYSIS OF THE OCCUPANCY GRID 

We use the occupancy grid temporal analysis to keep an 
evidence of the occupancy grid cells and to detect differences 
both at the cell level, and the object level by computing a so 
called map of the difference. Based on the difference map we 
created a reasoning to detect static and dynamic obstacles 
features.  

The Temporal Analysis of The Occupancy Grid (TAOG) 
approach consists in the following steps: 

1. Object Labeling. In this step each object from the 
Occupancy Grid is labeled with a unique identifier. The 

object labels are subsequently used for object association 
in consecutive frames. 

2. Ego Motion Compensation. The Ego Motion is 
compensated between successive frames in order to align 
the two Occupancy Grid coordinate systems. Coordinates 
from the previous frame are transformed straightforward 
into the current reference frame by a rotation and a 
translation assuming the ego car odometrical parameters 
are known. 

3. Difference Map Computation. For each cell a 
corresponding flag is assigned (direction, shadow, and 
core) by comparing the previous and current occupancy 
grid.  

4. Circular Histogram Generation and Interpretation.  In 
this step we compute a circular histogram for each object 
from the Occupancy Grid by radial scanning of the 
Difference Map. Using circular histogram (also known as 
polar histogram) we generate a distribution model for 
moving object differences.  We call these differences as 
front differences because usually they are clustered into a 
single front (Fig. 2.). The mean direction of an obstacle is 
estimated by using vector addition for all components 
accumulated into the histogram.  

5. Discrimination between static and dynamic obstacles. 
For each moving object we compute a motion score 
knowing its Center of Mass Difference in successive 
frames and its Dominant Vector Magnitude. 

Next we detail the main stages of the Occupancy Grid 
Temporal Analysis. 

A. Ego Motion Compensation  

To compensate the ego motion in the successive frames, for 
each given point Pt-1(Xt-1, Yt-1, Zt-1) in the previous frame the 
corresponding coordinates Pt(Xt, Yt, Zt)  in the current frame are 
computed by applying a rotation and a translation: 
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Where: 

( )ψyR  – is the rotation matrix around the Y axis with a 

given angleψ . 

Tz – is the point translation on the Z axis. It is considered 
that the translations on the X, Y axis are zero. 

B. Difference Map Computation 

For each cell in the previous frame we keep an evidence of 
its persistence at the corresponding position. Thus, based on the 
presence or absence of the cell in the current frame we build a  



 

 

Difference Map that stores the point differences in the two 
frames. 

A given cell in a certain position in the difference map may 
belong to the following categories: 

Core cell – if the same cell is occupied in the both of the 
frames. 

Direction cell – if a cell is empty in the previous frame, and 
occupied in the current frame. 

Shadow cell – the cells that are occupied in the previous frame 
and are empty in the current frame at the corresponding 
position.  

We use different flags for all of these categories. 

There are cases when the same cell is occupied in 
successive frames by different objects (obstacle or traffic isle). 
This is due to the Occupancy Grid noise or to the dynamic 
nature of the environment. In this case we take into account 
only the persistence of the obstacles (not traffic isles). This can 
be explained by the fact that the traffic isles are static related to 
the road surface while we focus on the dynamic object features. 

We must note that the obstacle association is limited by the 
obstacle velocity. The higher the object speed, the smaller the 
overlapped surface of an object in successive frames. However, 
the data acquisition is made at a frame rate of 20fps. Thus, for 
an 3 meters long and 2 meters wide obstacle, that has a velocity 
of 50km/h (generally this is the speed limit in urban areas), the 
overlapped surface in the consecutive frames is about 77%. 
This is more than enough for our approach, and even for higher 
speeds the overlapping is achieved. 

After the computation of the difference map we observe 
that the dynamic obstacles are characterized by three types of 
areas (see Fig. 3): a direction front (the direction of the moving 
obstacles), a shadow front (usually located behind the moving 
obstacles), and a core area that remains unchanged in the 
consecutive frames. 

Further, in this work we will use this information to 
compute the movement direction of the car through the 
creation and interpretation of circular histograms for each 
object. 

C. Circular Histogram Generation and Interpretation 

In this phase, for each object from the Temporal Difference 
Map, we calculate a dominant direction vector that is 
characterized by an orientation and a magnitude. The main idea 
consists in gathering a set of circular measurements for 
difference fronts and storing them into an angular histogram 
(also known as circular histogram or polar histogram). Thus, 
for a point situated at the object boundary we accumulate all 
the difference points (direction, and shadow) in a circular 
histogram by moving along a ray towards the object center of 
mass. The generated data sample in the histogram will have the 
same angle as the orientation of the processed ray. 

The problem of this approach is that it's hard to keep 
evidence from the previous frame to the current one, because 
of the new information that influences the object shape. The 
object  

Figure 3.  In a Difference Map, we have two types of difference fronts that 
characterize moving objects between two frames: in the direction front (with 
blue) the occupancy grid cells are present in the current frame but are empty 
in the previous frame, the shadow front flags the cells that are empty in the 
current frame but are filled in the previous one 

forms are influenced by the occluded points as well as by the 
dynamic nature of traffic scenes. 

For this we developed a technique that doesn’t take into 
consideration occluded points by radial scanning of the 
Difference Map. The result of this scanning is a polygonal 
model of the environment with the obstacle dynamic features 
associated to it.  

In this approach the scanning axis moves in the radial 
direction, having a fixed center at the Ego Car position (Fig. 4).  

Figure 4.  Accumulating the difference points that fall into the circular 
histogram associated to an object. 



 

The scanning process is made within the limits of two given 
angles, thus only the interest area is scanned, where the object 
delimiters can be detected. Having a radial axis with a given 
slope we try to find the nearest Object point from the Ego Car 
situated on this axis. In this way, all subsequent points will be 
accumulated into a Contour List, moving the scanning axis in 
the radial direction.  Once a point P of an object O is found 
(Fig. 4) we accumulate all the difference points situated on the 
axis that connect the point P and the center of mass Cm of the 
object O.  

The accumulated points form a direction vector that is 
stored into a circular histogram associated to the object O. 

The mean direction of an obstacle is estimated by using 
vector addition for all components accumulated into the 

histogram. Given a set of individual vectors with a direction iθ  

and a magnitude Mi, The mean direction θ  is ocmputed by the 
following formula: 

 θ = atan2(Rx, Rz). (2) 

Where:  
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Where n is the number of individual vectors from the 
histogram. In our experiments we use R (equation 4) as the 
magnitude of the mean vector. 

Fig.5.b shows the circular histograms (colored with orange) 
and the corresponding mean directions (colored with red) 
associated to the moving obstacles. 

D. Obstacle tracking  

Each obstacle (non traffic isle) is tracked in order to 
compute its filtered position and speed, which will allow 
further the discrimination between static and dynamic 
obstacles.  

A standard Kalman filter is employed in order to estimate 
the state of each obstacle: 

 .



















=

z

x

m

m

R

R

Z

X

x  (6) 

where: 

Xm, Zm are the coordinates of the obstacle mass center Cm, 

r
r

=(Rx, Rz) – the mean direction vector, which actually 
encodes the speed and the direction of movement. 

For each new obstacle (that has no associated obstacles in 
previous frames) a new tracker is initialized. If the obstacle has 
an associated obstacle in the previous frame, then the 
associated tracker is updated with the current frame 
measurements and the state of the obstacle is estimated based 
on the current measurements. The measurement covariance 
matrix R is computed based on the stereo uncertainty model 
described in [15]. The localization uncertainty is estimated 
considering the stereo system parameters and a disparity 
uncertainty of a quarter of a pixel. The process covariance 
matrix Q is estimated considering a certain covariance for the 
obstacles’ acceleration. 

IV.  EXPERIMENTAL RESULTS 

For the experimental results we tested a set of 10 scenarios 
form crowded urban environments using a 2.66GHz Intel Core 
2 Duo Computer with 2GB of RAM. 

Fig. 6 shows the Temporal Difference results (see Fig. 6.e) 
for the traffic scene from Fig. 6.a. The Occupancy Grid (see 
Fig. 6.b) is computed from scene (a). The temporal difference 
(Fig. 6.e) uses the previous occupancy grid (Fig. 6.c) corrected 
with the ego motion, and the current occupancy grid (Fig. 6.d). 
The Temporal Difference Maps Cells are classified in shadow 
cells (magenta), direction cells (blue), traffic isles core cells 
(yellow), and obstacles core cells (light green) 

It can be observed in the Temporal Difference Map (Fig. 
6.e) that despite the static nature of the traffic isles we obtain a 
shadow front at the Difference Map extremities. This is due the 
fact that after compensating the previous frame with the ego 
motion we obtain cells that have no correspondence in the 
previous frame. Therefore, shadow fronts are formed at the 
bottom of the Difference Map while direction fronts are formed 
at the top of the map. As a solution, we can use a Region of 
Interest for the processing algorithms. 

The environment representation accuracy depends on the 
3D reconstruction accuracy as well as on the results provided 
by the Occupancy Grid 

Fig. 7 Shows the Environment Representation result in 
Urban Driving Scenarios.  

Figure 5.  Difference Map (b) of the scene (a). Circular histograms (colored 
with orange) are computed. The mean directions (colored with red) are 
associated to the corresponding moving obstacles. 



 

 

Figure 6.  Temporal Difference. The Occupancy Grid (b) is computed from 
scene (a). The temporal difference (e) uses the previous occupancy grid (c) 
corrected with the ego motion, and the current occupancy grid (d). The 
Temporal Difference Maps Cells are classified in shadow cells (magenta), 
direction cells (blue), traffic isles core cells (yellow), and obstacles core cells 
(light green) 

Difference maps are presented on the left side. The detected 
Object Delimiters are shown in the Virtual View of the Scene 
(middle) and are projected onto the Left Camera Image (right 
side). The Object Delimiters are represented as grids labeled as 
Traffic Isles (orange), Static Objects (light green), and 
Dynamic Objects (red). It can be observed that the moving 
obstacles have an associated direction represented as an orange 
line. 

V. CONCLUSIONS 

In this paper we develop a new technique for dynamic 
obstacles detection and representation using a Dense 
Stereovision System. 

The proposed algorithm takes into account both the 3D 
information provided by the Occupancy Grid and the ego-car 
parameters.  

Figure 7.  Dynamic Environment Representation. 

 

We use a method for computing the differences between 
the two frames and generate an evidence space called 
Occupancy Grid Difference Map. A problem in using the 
Temporal Difference approach is that object forms are 
influenced by the occluded points as well as by the dynamic 
nature of traffic scenes. For this we developed a technique that 
doesn’t take into consideration occluded points by radial 
scanning of the Difference Map. 

We extend our previous Border Scanning algorithm [1] by 
detecting moving obstacles difference fronts and collecting 
them into circular histograms, associated to each object. We 
use the histogram circular measurements to compute a resultant 
direction vector and to separate obstacles into static and 
dynamic obstacles. 

As the result an improved 2.5D model is computed by 
representing the environment as a set of polylines with the 
associated static and dynamic features such as obstacle 
direction characterized by an orientation and a magnitude, type 
of the associated obstacle (Static or Moving obstacle, Object, 
Curb), a list of vertices, obstacle height etc. 

As future work we propose to focus our research in 
improving the accuracy of the Environment Representation. 
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