Image Processing - Laboratory 9: Image filtering in the spatial and frequency domains 1

9. Image filtering in the spatial and frequency domains

9.1. Introduction

In this laboratory the convolution operator will be presented. This operator is used in the
linear image filtering process applied in the spatial domain (in the image plane by directly
manipulating the pixels) or in the frequency domain (applying a Fourier transform, filtering
and then applying the inverse Fourier transform. Examples of such filters are: low pass filters
(for smoothing) and high pass filters (for edge enhancement).

9.2. The convolution process in the spatial domain

The convolution process implies the usage of a convolution mask/kernel H (usually with
symmetric shape and size w*w, cu w=2k+1) which is applied on the source image according
to (9.2).

I, =H=I 9.1)

k Kk
(6 Y) =D D H(,) Is(x+i,y+j), x=0.Height—1, y=0.Width-1 (9.2)

i=—k j=—k

This implies the scanning of the source image Is, pixel by pixel, ignoring the first and last k
rows and columns (Fig. 9.1) and the computation of the intensity value in the current position
(x,y) of the destination image Ip using (9.2). The convolution mask is positioned spatially with
its central element over the current position (x,y).

I 1,

HggiImﬁnmmnMHWCWWMMMnmomw.

The convolution kernels can have also non-symmetrical shapes (the central/reference
element is not positioned in the center of symmetry). Convolution with such kernels applied
in a similar way, but such examples will not be presented in the current laboratory.

9.2.1. Low-pass filters

Low-pass filters are used for image smoothing and noise reduction (see the lecture
material). Their effect is an averaging of the current pixel with the values of its neighbors,
observable as a “blurring” of the output image (they allow to pass only the low frequencies of
the image).

2 Technical University of Cluj-Napoca, Computer Science Department

All elements of the kernels used for low-pass filtering have positive values. Therefore, a
common practice used to scale the result in the intensity domain of the output image is to
divide the result of the convolution with the sum of the elements of the kernel:

1 &
oY) =220 D HG) 1s(x+iy +) (9.3)
i=—k j=—k
Where:
k Kk
C:ZZH(i,j) (9.4)
i=—k j=—k
Examples:
Mean filter (3x3):
111
%1 11 (9.5)
111
Gaussian filter (3x3):
1 1
— 2 (9.6)
1
0 1

a.. b. c
Fig. 9.2 a. Original image; b. Result obtained by applying a 3x3 mean filter. c. Result obtained by applying a 5x5
mean filter.

9.2.2. High-pass filters

These filters will highlight regions with step intensity variations, such edges (will allow to
pass the high frequencies).

The kernels used for edge detection have the sum of their elements equal to 0:

Laplace filters (edge detection) (3x3):
0 -1 0
-1 4 -1 (9.7)
0 -1 0

Image Processing - Laboratory 9: Image filtering in the spatial and frequency domains 3

or
-1 -1 -1
-1 8 -1 (9.8)
-1 -1 -1

High-pass filters (3x3):
0 -1 0
-1 5 -1 9.9
0 -1 0

or
-1 -1 -1
-1 9 -1 (9.10)
-1 -1 -1

a. B b. I' C.
Fig. 9.3 a. The result of applying the Laplace edge detection filter (9.8) on the original image (Fig. 9.2a); b. The
result of applying the Laplace edge detection filter (9.8) on the blurred image from Fig. 9.2b (previously filtered
with the 3x3 mean filter); c. The result obtained by filtering the original image with the high-pass filter (9.10)

9.3. Image filtering in the frequency domain

The 1D discrete Fourier transform (DFT) of an array of N real or complex numbers is
an array of N complex numbers, given by:

N-1 _2zjkn
X,e=>xe N, k=0.N-1 (9.11)
n=0
The inverse discrete Fourier transform (IDFT) is given by:
N-1 27 jkn
X, 1 Xe"N, n=0.N-1 (9.12)
N 7%

The 2D DFT is performed by applying the 1D DFT on each row of the input image and
then on each column of the previous result. The 2D IDTF is performed by applying the 1D
IDFT on each column of the DFT “image” and then on each row of the previous result. The
set of complex numbers which are the result of the DFT may also be represented in polar
coordinates (magnitude, phase). The set of (real) magnitudes represent the frequency power
spectrum of the original array.

4 Technical University of Cluj-Napoca, Computer Science Department

The DFT and its inverse are usually performed using the Fast Fourier Transform
recursive approach, which reduces the computation time from O(n?*)toO(nlInn), which
represents a significant speed increase, especially in the case of 2D image processing, where a
O(n*m?®) complexity would be intractable for large images as opposed to the almost linear in
number of pixels O(nmIn(m + n)) complexity.

N 7z

b) d) f)

Fig. 9.4 a) and b) original images; ¢) and d) logarithm of magnitude spectra; €) and f) centered logarithm of
magnitude spectra

9.3.1. Aliasing

The aliasing phenomenon is a consequence of the Nyquist frequency limit (a sampled
signal cannot represent frequencies higher than half the sampling frequency). This means that
the higher half of the frequency domain representation is redundant. This fact can also be seen
from the identity:

X, =X, (9.13)

(where the asterix denotes complex conjugation) which is true if the input numbers x, are

real. Therefore, the typical 1D Fourier spectrum will contain the low frequency components in
both the lower and upper part, with high frequency located symmetrically about the middle. In
2D, the low frequency components will be located near the image corners and the high
frequency components in the middle (see Fig. 9.4c, d). This makes the spectrum hard to read
and interpret. In order to center the low frequency components spectrum about the middle of
the spectrum, one should first perform the transformation on the input data:

X, < (-1)*x, (9.14)

Image Processing - Laboratory 9: Image filtering in the spatial and frequency domains S)

In 2D the centering transformation becomes:
Xy = (=" x,, (9.15)

After applying this centering transform, in 1D the spectrum will contain the low
frequency components in the center, and the high frequency components will be located
symmetrically toward the left and right ends of the spectrum. In 2D, the low frequency
components will be located in the middle of the image, while various high frequency
components will be located toward the edges.

The magnitudes located on any line passing through the DFT image center represent the
1D frequency spectrum components of the original image, along the direction of the line.
Every such line is therefore symmetrical about its middle (the image center).

—E\

Fig. 9.5 Fourier transforms of sine image waves a) and c¢). The center point in b) and d) represent the DC
component, the other two symmetrical points are due to the sine wave frequency.

9.3.2. Ideal low-pass and high-pass filters in frequency domain

The convolution in spatial domain is equivalent to scalar multiplication in frequency
domain. Therefore, especially for large convolution kernels, it is computationally convenient
to perform convolution in the frequency domain.

The algorithm for filtering in the frequency domain is:
a)Perform the image centering transform on the original image (9.15)
b)Perform the DFT transform
c)Alter the Fourier coefficients according to the required filtering
d)Perform the IDFT transform
e)Perform the image centering transform again (this undoes the first centering transform).

An ideal low pass filter will alter all the Fourier coefficients that are further away from

the image center (W/2, H/2) than a given distance R, by turning them to zero (W is the image
width and H is the image height):

(9.16)

6 Technical University of Cluj-Napoca, Computer Science Department

An ideal high-pass filter will alter all Fourier coefficients that are at a distance less than
R from the image center (W/2, H/2), by turning them to 0.

2 2
Xy s (E—uj +(Vl—vj > R?
2 2

X' = i) (9.17)
0, (i—u] +(Vl—vj <R?
2 2

The results of filtering with ideal low- and high-pass filtering are presented in Fig. 9.6
b) and c). Unfortunately, the corresponding spatial filters Fig. 9.6 e) and d) are not FIR (they
have an infinite support) and keep oscillating away from their centers. Because of this, the
low-pass and high-pass filtered images have a disturbing ringing wavy aspect. In order to
correct this, the cutoff in the frequency domain must be smoother, as presented in the next
section.

d) e) f)

Fig. 9.6 a) original image; b) result of ideal low-pass filtering; c) result of ideal high-pass filtering;
d) ideal low-pass filter in the frequency domain;) corresponding ideal low-pass filter in the spatial
domain; f) ideal high-pass filter in the frequency domain; g) corresponding ideal high-pass filter
in the spatial domain

9.3.3. Gaussian low-pass and high-pass filtering in the frequency domain

In the case of Gaussian filtering, the frequency coefficients are not cut abruptly, but
smoother cutoff process is used instead. This also takes advantage of the fact that the DFT of
a Gaussian function is also a Gaussian function (Fig. 9.7d-g).

The Gaussian low-pass filter attenuates frequency components that are further away from the

image center (W/2, H/2). A~ 1 where o is the standard deviation of the equivalent spatial
O

domain Gaussian filter.

Image Processing - Laboratory 9: Image filtering in the spatial and frequency domains 7

X, =X, A’ (9.18)
The Gaussian high-pass filter attenuates frequency components that are near to the
image center (W/2, H/2):

X =X_|1-e # (9.19)

Fig. 9.7 shows the results of Gaussian filter. Notice that the ringing (wavy) effect visible
in Fig. 9.6 disappeared.

d) €) f) 9)

Fig. 9.7 a) original image; b) result of Gaussian low-pass filtering; c) result of Gaussian high-pass
Filtering; d) Gaussian low-pass filter in the frequency domain; e) corresponding Gaussian low-pass filter in
the spatial domain; f) Gaussian high-pass filter in the frequency domain; g) corresponding Gaussian high-
pass filter in the spatial domain

9.4. Implementation details
9.4.1. Spatial domain filters

Low-pass filters will always have positive coefficients, and therefore, the resulting
filtered image will have positive values. You must ensure that the resulting image fits in the
desired range (0-255 in our case). In order to ensure this, you must ensure that the coefficients
of a low-pass filter sum to 1. If you are using integer operations pay attention to the order of
operations! Usually, the division should be the last operation performed in order to minimize
the rounding errors!

8 Technical University of Cluj-Napoca, Computer Science Department

High-pass filters will have both positive and negative coefficients. You must ensure that
the final result is an integer between 0 and 255! There are three possibilities to ensure that the
resulting image fits the destination range. The first one is to compute:

S,=> F., S =Y -F,

F >0 F <0
S-— 1
2max{S,,S }

ID(u,v):S(F*IS)(u,v)J{%J

(9.20)

In the formula above S, represents the sum of positive filter coefficients and S_ the

sum of negative filter coefficients magnitudes. This result of applying the high-pass filter
always lies in the interval [-LS ,LS,] where L is the maximum image gray level (255). The

result of this transform will place scale the result to [-L/2, L/2] and then move the O level to
L/2.

Another approach is to perform all operations using signed integers determine the
minimum and maximum and then linearly transform the resulting values according to:

_ L(S—min)
max—min

D (9.21)

The third approach is to compute the magnitude of the result and saturate everything
that exceeds the maximum level L.

9.4.2. Frequency domain filters

A library and a header file is supplied for performing the fast Fourier transform. The
library is called “dibfft.lib” and the header file is called “dibfft.n”. In order to use the library
file you should first copy the “dibfft.lib” and “dibfft.h” files to the “Diblook” folder.

Then right click on the “Diblook” project entry in the workspace window, select
“Add > Existing Item...”. It will automatically open the window “Add Existing Item -
DibLook”. You should select and add the file “dibfft.n” to the project.

Then the library “dibfft.lib” should be included in the project linker section. Perform
right click on the “DibLook” project in the workspace window and select “Properties”. It will
automatically open the window “DibLook Property Pages”. In the “Configuration” section
choose “All Configurations” and then add the library “dibfft.lib” in the “Linker” section
(see Fig. 9.8").

Finally you should add the header include “dibfft.h” in the “#include” section in the
“dibview.cpp” file.

Image Processing - Laboratory 9: Image filtering in the spatial and frequency domains 9

DiblLook Property Pages
(Qonfiguration: Al Configurations Vﬂ Platfarm; iActive(WinBZ) b | [Configuration Manager. ., J
[#- Comman Properties [Additional Dependencies dibfft.lib E]j
[=)- Configur ation Properties Ignote All Defadlk Libraries Mo
- zeneral Ignore Specific Library
- Debugging Module Definition File
- CfC+H+ Add Module to Assembly
=) Linker Embed Managed Resource File
' Faorce Symbol References
! : : Delay Loaded DLLs
- Manifest Filz :
. Debugaing Assembly Link Resource
- System
- Optimization
- Embedded 10U
- Advanced

- Command Line
[#- Manifest Toal
Resources
[#- =ML Document Generatar
[# Browse Information
[#- Build Events
[# Custom Build Step
Code Analysis

- Application Verifier Additional Dependencies

Specifies additional items ko add to the link line (gx: kernel32.lib); configuration specific,

ok | [Cancel Apply

Fig. 9.8 Adding a library file to the project

The library provides the following functions:

/*The first two paramers are the image width & height

These functions only work correctly for width, height powers of 2 and >=4.
Parameters 3 and 4 are the input real and imaginary parts arrays

of width*height values. Acceptable value types are unsigned char (BYTE),

float and double. The imaginary part is optional (T*)0 can be provided instead,
and the input will be assumed as consisting of values of O.

Parameters 5 and 6 are the output real and imaginary parts.Acceptable value types
are unsigned char (BYTE), float and double. The imaginary part is optional (T*)0
can be provided instead. The imaginary part of the output will be discarded in this
case.*/

/*perform FFT on image rows*/
template<class T> void fftrows(int width, int height, const T *ix, const T *iy,
double *ox, double *oy);

/*perform IFFT on image rows*/
template<class T> void ifftrows(int width, int height, const double *ix, const
double *iy, T *ox, T *oy);

/*perform FFT on image cols*/
template<class T> void fftcols(int width, int height, const T *ix, const T *iy,
double *ox, double *oy);

/*perform IFFT on image cols*/
template<class T> void ifftcols(int width, int height, const double *ix, const
double *iy, T *ox, T *oy);

/*perform FFT on image*/
template<class T> void fftimage(int width, int height, const T *inpx, const T*
inpy, double *ox, double *oy);

/*perform IFFT on image*/
template<class T> void ifftimage(int width, int height, const double *ix, const
double *iy, T *outpx, T *outpy);

10 Technical University of Cluj-Napoca, Computer Science Department

The functions provided are template based and work for BYTE, float and double
inputs/outputs. Imaginary parts are optional for both input and output. Use NULL pointers to
specify missing inputs/outputs.

The following code gives an example of FFT followed by an IFFT. The original image should
be recovered:

BEGIN_PROCESSINGQ) ;

double *real= new double[dwWidth*dwHeight];

double *imag= new double[dwWidth*dwHeight];
fftimage(dwWidth, dwHeight, IpSrc, (BYTE*)O, real, imag);
ifftimage(dwWidth, dwHeight, real, imag, lIpDst, (BYTE*)0);
END_PROCESSING("'FFT'™);

A few important aspects of working with frequency domain values:
1. Always use for FFT only grayscale images having both width and height powers of two
(example: image “cameraman.bmp” having width=height=256=2° pixels)

2.Always perform the centering transform (9.15) before performing the FFT and after
performing the IFFT:
for(int i=0;i< dwHeight;i++) {

for(int j=0;j< dwWidth;j++) {
DLi*w+j] = ((i+j)&1)?-S[i*w+j]:S[i*w+j];

3. The DC (0,0) Fourier coefficient highly dominates the other ones. When displaying the
magnitude of Fourier coefficients it is better to use the logarithm of the module+1!
You should determine the maximum value of the logarithm and scale the remaining
values to fit the range

4. The Fourier transform of an image is a complex array of floating point values! Store
both real and imaginary values as floating points! When converting back to the spatial
domain the imaginary values may be discarded (for usual filters they should be 0
anyway).

9.5. Practical work

1. Implement the convolutions with the kernels from equations (9.5) (9.10)

2. Implement a customized convolution operator of size 3x3 using values specified by
the user in a dialog box. The scaling coefficient should be computed automatically as
either the reciprocal of filter coefficient sum for low pass filters or according to
equation (9.20) for high-pass filters.

3. Import the dibfft library into Diblook (see section 9.4.2). Add a processing function
that performs the FFT transform of an input image and the transforms the result back
to the spatial domain using IFFT. Check if the destination is the same as the source!

4. Add a processing function that computes and displays the logarithm of the magnitude
of the Fourier transform of an input image.

5. Add processing functions that perform low- and high-pass filtering in the frequency
domain using the ideal and Gaussian filters from equations (9.16)...(9.19).

6. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with
the implemented algorithms.

Image Processing - Laboratory 9: Image filtering in the spatial and frequency domains 11

References

[1]. Umbaugh Scot E, Computer Vision and Image Processing, Prentice Hall, NJ, 1998, ISBN
0-13-264599-8
[2] R.C.Gonzales, R.E.Woods, Digital Image Processing, 2-nd Edition, Prentice Hall, 2002

