
 Image Processing - Laboratory 2: The color model. Color ⇒ grayscale and grayscale ⇒ black&white conversions

1

2. The color model. Color ⇒⇒⇒⇒ grayscale and grayscale ⇒⇒⇒⇒
black&white conversions

2.1. Introduction

The purpose of this second laboratory is to learn the basic color handling procedures related to
the digital bitmap images.

2.2. The RGB color model

The color of each pixel (both for the acquisition device (camera) and for displays (TV, CRT,
LCD)) is obtained through the combination of the tree elementary colors: Red, Green and
Blue (additive color model – fig. 2.1 and 2.2).

Fig. 2.1. A representation of additive color mixing. Projection of primary color lights on a screen shows
secondary colors where two overlap; the combination of all three of red, green, and blue in appropriate

intensities makes white [1].

Fig. 2.2. The color of an image is obtained by combining the tree elementary colors for each pixel (three

elementary color images).

Therefore, each pixel of a bitmap image will be characterized by a value for each of the tree
primary colors. Its color is a point from the 3D space of the RGB color model (fig. 2.3). In
this color cube, the origin of the R, G and B axes corresponds to the black color (0,0,0). The
opposite vertex of the cube corresponds to the white color (255,255,255). The diagonal
between the black and the white colors corresponds to the grayscale values (R=G=B). Three
vertexes correspond to the primary colors Red, Green and Blue. The other 3 vertexes are
corresponding to the complementary colors: Cyan, Magenta and Yellow. If the origin of the
color model is translated into the ‘white’ point and the tree axes of the coordinate system are
considered the C, M and Y axes, the complementary CMY color model is obtained (which is
used in the color printing devices).

Technical University of Cluj-Napoca, Computer Science Department

2

Fig. 2.3. The RGB color model mapped to a cube. In this example (RGB24 bitmap image) each color is

represented on 8 bits (256 colors). The total number of colors is 28x28x28 = 234 = 16.777.216.

For an RGB24 (24 bits/pixels) image the whole color space can be represented (true color
image). In an indexed image (with LUT) only a subspace of the color space from figure 2.3
can be represented. In this context the number of bits/pixel (the number of bits used to encode
each color) is called ‘color depth’ (table 2.1):

Table 2.1. Color depths vs. image type

Color Depth No. of. Colors Color Mode Palette (LUT)
1 bit color 2 Indexed Color Yes
4 bit color 16 Indexed Color Yes
8 bit color 256 Indexed Color Yes
16 bit color 65536 True Color No
24 bit color 16.777.216 True Color No
32 bit color 16.777.216 True Color No

There are also other color models [2] used to represent the color but they will not be discussed
here.

2.3. Conversion of a color image into a grayscale one

In order to convert a color image into a grayscale one, the 3 color components of each pixel
must be equalized. A common procedure is to make the average of the three color
components:

3
SrcSrcSrc

DstDstDst

BGR
BGR

++
=== (2.1)

 Image Processing - Laboratory 2: The color model. Color ⇒ grayscale and grayscale ⇒ black&white conversions

3

2.3.1. The case of the RGB24 (24 bits/pixel) images

In this case the formula from (2.1) can be applied by accessing the tree color components of
each pixel from the source/destination image as shown in Laboratory 1.

2.3.2. The case of the indexed images (with LUT).

In this case the entries of the destination’s image LUT should be iterated (see example from
Laboratory 1) and the color components of each entry should be converted using (2.1).After
this simple operation, a common situation which can occur is the following: the entries of the
LUT are not any more ordered in ascending direction upon their grayscale values (fig. 2.4):

Old index R G B X
0 100 100 100 -
1 20 20 20 -
2 32 32 32 -
.
.
.

255 78 78 78 -
Fig. 2.4. Un-sorted LUT after color-to-grayscale conversion of an 8 bits/pixel indexed image.

Some further processing on the grayscale image would require a sorted LUT. Therefore this
operation should be done after the conversion.

A simple method to sort the LUT:

1. Create a BYTE vector of size 256:

ex: BYTE g[256];

2. Go through the LUT and initialize the values of g with one of the color components of the
entry k. of the unsorted LUT (fig. 2.4) followed by the “sorting” of the LUT by assigning the
value of the index ‘k’ to each of the tree color components from the entry ‘k’ (in this order):

for (k= 0 … iColors) {

 // initialize vector g
 g[k] = paleta[k].rgbRed;
 // „sort” the LUT
 paleta[k].rgbRed = paleta[k].rgbGreen = paleta[k] .rgbBlue = k;

}

New Index R G B X g

0 0 0 0 - 5
1 1 1 1 - 23
2 2 2 2 - 14
.
.
.

255 255 255 255 - 243
Fig. 2.5. Sorted LUT after step 2.

Technical University of Cluj-Napoca, Computer Science Department

4

3. Finally the ‘Bitmap data’ (image pixels) should be iterated and the old values (indexes) of
each pixel should be replaced with the new ones, according to the established correspondence:
k → g(k) (fig. 2.5):

k = lpDst[i*w+j];
 lpDst[i*w+j] = g [k];

2.4. Accessing the LUT’s contents and other relevant information from the
bitmap header.

The following example shows how the information from the bitmap header can be accessed:

//Gets the pointer to the beginning of the Bitmap H eader in memory in a
//as BITMAPINFO STRUCTURE pointer
LPBITMAPINFO pBitmapInfoSrc = (LPBITMAPINFO)lpS;

or
BITMAPINFO *pBitmapInfoSrc = (BITMAPINFO*) lpS;

// gets the size of the bitmap
pBitmapInfoSrc->bmiHeader.biSize;
//gets the number of bits/pixel
pBitmapInfoSrc ->bmiHeader.biBitCount; //the number of bits/pixel (1, 4, 8,
//16, 24, 32)

 ………

where the BITMAPINFO and BITMAPINFOHEADER structures [3] are defined as bellow:

typedef struct tagBITMAPINFO {
 BITMAPINFOHEADER bmiHeader ;
 RGBQUAD bmiColors [1];
} BITMAPINFO, *LPBITMAPINFO;

typedef struct tagBITMAPINFOHEADER{
 DWORD biSize ;
 LONG biWidth ;
 LONG biHeight ;
 WORD biPlanes ;
 WORD biBitCount ;
 DWORD biCompression ;
 DWORD biSizeImage ;
 LONG biXPelsPerMeter ;
 LONG biYPelsPerMeter ;
 DWORD biClrUsed ;
 DWORD biClrImportant ;
} BITMAPINFOHEADER, *LPBITMAPINFOHEADER;

The way in which the LUT entries can be accessed was presented in Laboratory 1!

2.5. Guide to display information in a dialog box

2.5.1. Creating a new Dialog Box resource

1. Switch in the Workspace Window on the ResourceView tab, expand the Dialog element,
right-click on it and then left-click on Insert Dialog (fig. 2.6.a).

 Image Processing - Laboratory 2: The color model. Color ⇒ grayscale and grayscale ⇒ black&white conversions

5

2. Right-click on the newly created dialog resource. In the right part of the VC environment
Properties window associated to the dialog will be activated(fig. 2.6.b) you can change the
name (recommended), the style, the resource ID (not recommended) and so on.

3. Right-click on the newly created dialog resource and select the Add class’ option (fig. 2.7).
The „MFC Class Wizard” dialog will be opened (fig.2.8).

a. b.

Fig. 2.6.

Fig. 2.7.

Technical University of Cluj-Napoca, Computer Science Department

6

4. Give a relevant name for the class associated to the dialog (example CBitmapInfoDlg. The
wizard automatically creates the appropriate *.h and *.cpp files for the class (the name of the
file is usually similar with the name of the dialog – you don’t have to change it). The new
class can be easily accessed through the ClassView tab of the Workspace window (where is
added automatically – fig. 2.10.d).

Fig. 2.8.

5. Include the header of the new dialog class in the #include section of the dibview.cpp file:

#include "BitmapInfoDlg.h"

6. Create an instance (object) of the new class and display the dialog in your processing
function. The code below only displays the new dialog resource in modal way (the code
following the DoModal() call will be executed only after the dialog is closed). There are also
ways to display a dialog in a non-modal way (homework if you want).

void CDibView::OnProcessingAfisarebmpheader()
{

// You can use the call to the macro bellow when
// you don’t need to display a destination image
BEGIN_SOURCE_PROCESSING;

 //creates an instance (object) of the dialog class
 CBitmapInfoDlg dlgBmpHeader;

// TODO: Add here the code for reading the bitmap h eader content and for
// writing it in the dialog

 //displays dialog in 'modal' mode
 dlgBmpHeader.DoModal();

// You can use the call to the macro bellow when
// you don’t need to display a destination image
END_SOURCE_PROCESSING;

}

 Image Processing - Laboratory 2: The color model. Color ⇒ grayscale and grayscale ⇒ black&white conversions

7

Fig. 2.9.

2.5.2. Designing the dialog box

In order to show or to get some data from the dialog box, Controls should be added to the
already created dialog resource. The most common controls are the Static Text (for output)
and the Edit Box (for output/input). In the current case only output is required. In order to add
a control to the dialog, select the Toolbox window and within select a control and the click in
the dialog to drop the control in the desired location.

Individual fields (as the bitmap height, width etc.) can be easily shown in Static Text controls.
In order to write something in a static text, an individual ID should be given explicitly to each
static text control (the default/generic ID is ID_STATIC for all static text controls).

Tables (as the content of the LUT) can be shown in an Edit Box. Edit box controls have
allocated an individual ID by default (there is no need to change it). For the Edit Box controls
the styles can be edited for the desired appearance (fig. 2.10.a).

Once the controls are added to the dialog, a set of variables should be associated with them.
This can be done using the Add Member Variable Wizard dialog ((right-click on the control
resource and select the Add Variable option – fig.2.10.b).

In the Add Member Variable Wizard dialog (fig. 2.10.c) to each control (identified by each
ID) a member variable should be added (specified by name, type (use CSting), category
(select Value)) etc.). The member variables associated to the controls using the Add Member
Variable Wizzard are added automatically to the dialog class (fig. 2.10.d).

Technical University of Cluj-Napoca, Computer Science Department

8

a. b.

c.

d

Fig. 2.10.

 Image Processing - Laboratory 2: The color model. Color ⇒ grayscale and grayscale ⇒ black&white conversions

9

2.5.3. Writing into the dialog box

In order to write the desired data in a dialog box, the data should be written into the variables
associated with the controls of the dialog. This should be done in the processing function
(before calling the DoModal() method which shows the dialog):

void CDibView::OnProcessingAfisarebmpheader()
{

BEGIN_SOURCE_PROCESSING;

 //creates an instance (object) of the dialog class
 CBitmapInfoDlg dlgBmpHeader;

 LPBITMAPINFO pBitmapInfoSrc = (LPBITMAPINFO)lpS;

 dlgBmpHeader.m_Width.Format("Image width [pixels]: %d",

pBitmapInfoSrc->bmiHeader.biWidth);
 // and the other info

 // Stores the entries of the LUT in the CString var iable m_LUT
 // (associated to the edit box for displaying the LUT)
 CString buffer;
 for (int i=0;i<iColors;i++)
 {
 buffer.Format("%3d.\t%3d\t%3d\t%3d\r\n",i,

bmiColorsSrc[i].rgbRed,
bmiColorsSrc[i].rgbGreen,
bmiColorsSrc[i].rgbBlue);

 dlgBmpHeader.m_LUT+=buffer;
 }

 //displays the dialog in 'modal' mode
 dlgBmpHeader.DoModal();

 END_SOURCE_PROCESSING;
}

2.6. Conversion of a grayscale image in a binary (black & white) image

A binary (black & white image) is an image which contains only 2 colors: black and white. A
Binary image can be obtained from a grayscale image through a simple operation called
thresholding. Thresholding is the most trivial image segmentation technique which allows
separation of objects from the background (fig. 2.11).

Fig. 2.11.

Technical University of Cluj-Napoca, Computer Science Department

10

In this laboratory the thresholding with a fixed (arbitrary chosen) threshold value of an
indexed (8 bits/pixel) grayscale image will be discussed. The thresholding can be performed
by scanning the values of each pixel from the input image and replacing the corresponding
pixel in the destination image using the following condition:





≥+
<+

=+
thresholdjwilpSrcifwhite

thresholdjwilpSrcifblack
jwilpDst

]*[,)(255

]*[,)(0
]*[(2.2)

The value of the threshold can be established inline the code (not recommended) or through a
dialog box (recommended). The way in which a dialog resource and an edit box control is
created and used to get a value is similar as presented in section 2.5. The edit box should
allow editing its content (not to be read-only (default), as shown in figure 2.12. The type of
the variable used to get/store the value typed in the edit box can be a numerical one (BYTE –
fig. 1.12).

Fig. 2.12.

Sample code for getting the threshold value from the dialog:

void CDibView::OnProcessingBinarizarecupragarbitrar ()
{
 BYTE threshold;
 //creates an instance (object) of the dialog class
 CThresholdDlg dlgThresh;

 if (dlgThresh.DoModal() == IDOK) {
 threshold=dlgThresh.m_thresh;
 BEGIN_PROCESSING();
 // Go through the bitmap pixels and performs thre sholding
 // ...
 CString buf;
 buf.Format("Threshold = %d", threshold);
 END_PROCESSING (buf);
 }
}

 Image Processing - Laboratory 2: The color model. Color ⇒ grayscale and grayscale ⇒ black&white conversions

11

2.7. Practical work

1. Add to the DIBLook framework a function for displaying (in a dialog box) the
information from the bitmap header and the content of the LUT.

2. Add to the DIBLook framework a processing function for the color ⇒ grayscale
conversion of a RGB24 images (24 bits/pixel), using (2.1).

3. Add to the DIBLook framework a processing function for the color ⇒ grayscale
conversion of an indexed images (8 bits/pixel), using (2.1).

4. Add to the DIBLook framework a processing function which sorts the LUT of an
indexed image, as described in section 2.3.2.

5. Compare the content of an unsorted LUT with a sorted one (using the grayscale image
obtained from Kids.bmp color image).

6. Integrate functions from points 3 and 4 in a single one.
7. Add to the DIBLook framework a processing function for the grayscale ⇒ black&white

conversion for indexed images (8 bits/pixel), using (2.2). Read the value of the threshold
from an edit control of a dialog box. Test the thresholding operation with
several/different threshold values on various grayscale images.

8. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with the
implemented algorithms!!!

References
[1] http://en.wikipedia.org/wiki/RGB_color_model
[2] http://en.wikipedia.org/wiki/Color_models
[3] http://msdn2.microsoft.com/en-us/library/ms779712(VS.85).aspx

