
 Image Processing - Laboratory 1: Getting started with the DIBLook framework

1

1. Getting started with the DIBLook framework

1.1. Introduction

The purpose of this first laboratory is to acquaint the students with the framework application
which will be used in the practical works related to the Image Processing lecture.

The background knowledge necessary to successfully complete the image processing
laboratory are:

• Compulsory: C, Computer Programming, Data Structures and Algorithms.
• Optional (recommended): C++, Visual C++ 9.0 (Visual Studio 2008), Object

Oriented Methods, Fundamental Algorithms, Programming Techniques, Linear
Algebra and Geometry, Discrete Mathematics, Numerical Calculus, Special
Mathematics

1.2. Overview of the DIBLook framework

The framework which will be used for the implementation and testing of the learned image
processing algorithms is based on the DIBLook sample application available in MSDN. A
modified version of this application (for easier usage) is available on the Image Processing
Laboratory’s web page.

DIBLook is a MDI (Multiple Document Interface) application [1] complying the Document-
View Architecture [2], [3] (Fig. 1.1) of the MFC (Microsoft Foundation Class Library) [4].

Fig. 1.1. The Document View architecture [3]

The original DIBLook allows the user to open, view, and save bitmap images (*.bmp, *.dib)
(Fig. 1.2). Each Image is opened in a different window and has associated its own View-
Object (instantiated from the CDibView class) and Document Object (instantiated from the
CDibDoc class) (Fig. 1.6). The View Object is used to interact with the data associated to the
bitmap which is stored in the Document Object.

http://msdn2.microsoft.com/en-us/library/ms632591(VS.85).aspx�
http://www.functionx.com/visualc/Lesson05.htm�
http://msdn2.microsoft.com/en-us/library/4x1xy43a(VS.80).aspx�
http://msdn2.microsoft.com/en-us/library/d06h2x6e(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/4x1xy43a(VS.80).aspx�

Technical University of Cluj-Napoca, Computer Science Department

2

Fig. 1.2. Each opened image is displayed in a different frame/window and as its own View Object and Document

Object.

1.3. Adding a processing function to the DIBLook application

In order to perform any sort of processing to an opened image the following steps should are
required:

1. Switch on the Resource View tab (if it doesn’t appear open it form the menu View->Other
Windows->Resource View) and open the IDR_DIBTYPE menu (Fig. 1.3):

Fig. 1.3. Application resource window

 Image Processing - Laboratory 1: Getting started with the DIBLook framework

3

2. Add a new menu entry by typing the name below the existing entry (Fig.1.4):

Fig. 1.4. Adding the NewProcessing entry to the menu

3. Associate a function to be executed when the menu is clicked using Add Event Handler…
(right click on the menu):

Fig. 1.5. Adding the function associated to the mouse click event on the NewProcessing entry

Important things to notice:
a. The new function should be a member of CDibView Class !
b. The function should be called by the COMMAND massage (generated by the ‘click’ on the
menu).

4. Add and access the code for the new function through the Add and Edit button.

void CDibView::OnProcessingNewprocessing()
{
 // TODO: Add your command handler code here
}

Technical University of Cluj-Napoca, Computer Science Department

4

1.4. A sample image processing function

A sample of a simple image processing function is given in the provided DIBLook application
source code. The function OnProcessingParcurgereSimpla is a member of the CDibView
Class (compulsory) and was created following the steps presented in the previous chapter
(1.3). It shows how to access the pixels of an 8 bits/pixel source bitmap image, performs some
simple operations (equals the entries from the LUT (grayscale) and the negatives each pixel of
the image) and shows the results in a new/destination window (associated with its
corresponding new/destination Document and View objects).

Fig. 1.6. The Class-View window and the CDibView class methods

void CDibView::OnProcessingParcurgereSimpla()
{
 BEGIN_PROCESSING();

 // Makes a grayscale image by equalizing the R, G, B components from the LUT
 for (int k=0; k < iColors ; k++)
 bmiColorsDst[k].rgbRed=bmiColorsDst[k].rgbGreen=
 bmiColorsDst[k].rgbBlue=k;

 // Goes through the bitmap pixels and performs their negative
 for (int i=0;i<dwHeight;i++)
 for (int j=0;j<dwWidth;j++)
 lpDst[i*w+j]= 255 - lpSrc[i*w+j]; //makes image negative

 END_PROCESSING("Operation name");
}

 Image Processing - Laboratory 1: Getting started with the DIBLook framework

5

1.4.1. The macro definition: BEGIN_PROCESSING()

It provides all the necessary initializations definitions and allocations. It is defined at the
beginning of dibview.cpp file (is not provided with the original DIBLook sample from the
MSDN. Be aware if you want to edit it (each line should be ended by ‘\’ + <ENTER>,
comments are not allowed etc.).

#define BEGIN_PROCESSING() \
 CDibDoc* pDocSrc=GetDocument(); \
 CDocTemplate* pDocTemplate=pDocSrc->GetDocTemplate(); \
 CDibDoc* pDocDest=(CDibDoc*) pDocTemplate->CreateNewDocument(); \
 BeginWaitCursor(); \
 HDIB hBmpSrc=pDocSrc->GetHDIB(); \
 HDIB hBmpDest = (HDIB)::CopyHandle((HGLOBAL)hBmpSrc); \
 if (hBmpDest==0) { \
 pDocTemplate->RemoveDocument(pDocDest); \
 return; \
 } \
 BYTE* lpD = (BYTE*)::GlobalLock((HGLOBAL)hBmpDest); \
 BYTE* lpS = (BYTE*)::GlobalLock((HGLOBAL)hBmpSrc); \
 int iColors = DIBNumColors((char *)&(((LPBITMAPINFO)lpD)->bmiHeader)); \
 RGBQUAD *bmiColorsDst = ((LPBITMAPINFO)lpD)->bmiColors; \

RGBQUAD *bmiColorsSrc = ((LPBITMAPINFO)lpS)->bmiColors; \
 BYTE * lpDst = (BYTE*)::FindDIBBits((LPSTR)lpD); \
 BYTE * lpSrc = (BYTE*)::FindDIBBits((LPSTR)lpS); \
 DWORD dwWidth = ::DIBWidth((LPSTR)lpS); \
 DWORD dwHeight = ::DIBHeight((LPSTR)lpS); \
 DWORD w= WIDTHBYTES(dwWidth*((LPBITMAPINFOHEADER)lpS)->biBitCount); \

Comments:
//Access to the document object of the current view (associated to the image opened in the
active window/frame
CDibDoc* pDocSrc=GetDocument();

//Access to its template
CDibDoc* pDocDest=(CDibDoc*) pDocTemplate->CreateNewDocument();

//Creates the destination object with the same template as the source document
CDibDoc* pDocDest=(CDibDoc*) pDocTemplate->CreateNewDocument();

//Gets the handle to the Source Image
HDIB hBmpSrc=pDocSrc->GetHDIB();

//Creates a copy of the source image handle in the destination one
HDIB hBmpDest = (HDIB)::CopyHandle((HGLOBAL)hBmpSrc);

//Gets the pointer to the beginning of the Destination and Source images in the memory
BYTE* lpD = (BYTE*)::GlobalLock((HGLOBAL)hBmpDest);
BYTE* lpS = (BYTE*)::GlobalLock((HGLOBAL)hBmpSrc);

//Gets the number of entries from the LUT (for an indexed image): iColors = 2n-1
// n = 1, 4 or 8 (no. of bits/pixel)
// For a RGB image (n = 16, 24 or 32 bits/pixel): iColors = 0
int iColors = DIBNumColors((char *)&(((LPBITMAPINFO)lpD)->bmiHeader));

Technical University of Cluj-Napoca, Computer Science Department

6

//Gets the pointer to the beginning of the LUT
RGBQUAD *bmiColorsDst = ((LPBITMAPINFO)lpD)->bmiColors;
RGBQUAD *bmiColorsSrc = ((LPBITMAPINFO)lpS)->bmiColors;

//Gets the pointers to the beginning of the bitmap data (pixels) of the destination/source
images
BYTE * lpDst = (BYTE*)::FindDIBBits((LPSTR)lpD);
BYTE * lpSrc = (BYTE*)::FindDIBBits((LPSTR)lpS);

// Gets the width and the height and the bitmap (image data) [pixels]
DWORD dwWidth = ::DIBWidth((LPSTR)lpS);
DWORD dwHeight = ::DIBHeight((LPSTR)lpS);

//Gets the width of an image line from the memory in number of double-words for a bitmap
(1 double word = 4 bytes = 32 bits = memory alignment in a 32 bit Windows OS); biBitCount
represents the number of bits/pixel
DWORD w=WIDTHBYTES(dwWidth*((LPBITMAPINFOHEADER)lpS)->biBitCount);

Fig. 1.7. Structure of a bitmap (with LUT – 1, 4 or 8 bits / pixel) in the memory (source image and destination

image).

1.4.2. The macro definition: END_PROCESSING("Operation name");

#define END_PROCESSING(Title) \
 ::GlobalUnlock((HGLOBAL)hBmpDest); \
 ::GlobalUnlock((HGLOBAL)hBmpSrc); \

EndWaitCursor(); \
 pDocDest->SetHDIB(hBmpDest); \

Bitmap Header
(LPBITMAPINFO)

LUT (Paleta de culori)

RGBQUAD (4 bytes):
 R G B

Bitmap data (pixels)

 pixel

dwWidth

dwHeight

lpS

lpSrc

Bitmap Header
(LPBITMAPINFO)

LUT (Paleta de culori)

RGBQUAD (4 bytes):
 R G B

Bitmap data (pixels)

 pixel

dwWidth

dwHeight

lpD

bmiColorsDst

lpDst

iColors = 2n-1
n = 1, 4 or 8
(n – no. bits/pixel)

iColors

bmiColorsSrcSrc

 Image Processing - Laboratory 1: Getting started with the DIBLook framework

7

 pDocDest->InitDIBData(); \
 pDocDest->SetTitle((LPCSTR)Titlu); \
 CFrameWnd* pFrame=pDocTemplate->CreateNewFrame(pDocDest,NULL); \
 pDocTemplate->InitialUpdateFrame(pFrame,pDocDest);

Comments:
//Releasing the handles of the bitmaps
::GlobalUnlock((HGLOBAL)hBmpDest);
::GlobalUnlock((HGLOBAL)hBmpSrc);

//Setting the handle of the destination image and initializing other data in the associated
Document object
pDocDest->SetHDIB(hBmpDest);
pDocDest->InitDIBData();
pDocDest->SetTitle((LPCSTR)Titlu);

//Creating a frame for the destination image (results) and updating its content with the
processed image
CFrameWnd* pFrame=pDocTemplate->CreateNewFrame(pDocDest,NULL);
pDocTemplate->InitialUpdateFrame(pFrame,pDocDest);

1.4.3. Accessing the LUT

The LookUp Table (the colors palette) can be accessed through the bmiColorsSrc/
bmiColorsDst pointer. It is a table of 4 bytes entries (RGBQUAD structure) containing a byte
for each color (R,G,B) and a reserved one.

In the given example the LUT entries of the destination image are equalized with their index,
obtaining a grayscale image.

 // Makes a grayscale image by equalizing the R, G, B components from the LUT
 for (int k=0; k < iColors ; k++)
 bmiColorsDst[k].rgbRed=bmiColorsDst[k].rgbGreen=
 bmiColorsDst[k].rgbBlue=k;

1.4.4. Accessing the image pixels from the bitmap data for an indexed image (with LUT)

The pixels of an 8 bits/pixel bitmap image can be accessed as in the example bellow:

 // Goes through the bitmap pixels and performs their negative
 for (int i=0;i<dwHeight;i++)
 for (int j=0;j<dwWidth;j++)
 {
 lpDst[i*w+j]= 255 - lpSrc[i*w+j]; //makes image negative
 }

The location of the current pixel (i,j) of the bitmap is at address i*w+j relative to the
beginning of the bitmap data. w is the width of a line in number of double words (1 double
word = 4 bytes = 32 bits = memory alignment in a 32 bit Windows OS):

Technical University of Cluj-Napoca, Computer Science Department

8

Fig. 1.8. Example of how a line of 97 pixels is stored in the memory.

1.4.5. Accessing the image pixels from the bitmap data for an RGB image

Images with 16, 24, or 32 bits/pixel don’t have a LUT. Instead, each pixel from the bitmap
data contains the color information (the values of the 3 components R, G, B) in the bitmap
data. In the following example the most common RGB image will be considered: 24 bits/pixel
image (also called RGB24). In Fig. 1.9 the structure of such an image in the memory is
shown:

Fig. 1.9. Structure of a 24 bits/pixel (RGB24) bitmap image (without LUT) in the memory.

The pixels (the color components) of a RGB24 bitmap image can be accessed as in the
example bellow:

 INCEPUT_PRELUCRARI();
 BYTE red, green, blue;

 for (int i=0;i<dwHeight;i++)
 for (int j=0;j<dwWidth;j++)

{
 red = lpSrc[i*w+3*j+2];

green = lpSrc[i*w+3*j+1];
blue = lpSrc[i*w+3*j];

}

Bitmap Header
(LPBITMAPINFO)

Bitmap data (pixels)

dwWidth

dwHeight

lpS

lpSrc

pixel row i

column j

3 bytes

 Image Processing - Laboratory 1: Getting started with the DIBLook framework

9

1.5. Practical work

1. Make a copy of the DIBLook application in your local (working) folder.
2. Open the diblook.sln (the solution file) in Visual C++ 9.0.
3. Build and run the application.
4. Test the provided sample function: Processing->Parcurgere simpla
5. Add a new menu and associated processing function (using the hints from chapter 1.3

and the example from chapter 1.4).
6. Apply some simple arithmetic operations on the pixels of the input image

(adding/subtracting/multiplying with a constant) and put the results in the corresponding
pixels of the destination image. Add some supplementary conditions in order to
normalize the results (the values of the output/destination pixels) in the BYTE range
(0 … 255).

7. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with the
implemented algorithms!!!

References
[1] http://msdn2.microsoft.com/en-us/library/ms632591(VS.85).aspx
[2] http://www.functionx.com/visualc/Lesson05.htm
[3] http://msdn2.microsoft.com/en-us/library/4x1xy43a(VS.80).aspx
[4] http://msdn2.microsoft.com/en-us/library/d06h2x6e(VS.71).aspx

http://msdn2.microsoft.com/en-us/library/ms632591(VS.85).aspx�
http://www.functionx.com/visualc/Lesson05.htm�
http://msdn2.microsoft.com/en-us/library/4x1xy43a(VS.80).aspx�
http://msdn2.microsoft.com/en-us/library/d06h2x6e(VS.71).aspx�

	1. Getting started with the DIBLook framework
	1.1. Introduction
	1.2. Overview of the DIBLook framework
	1.3. Adding a processing function to the DIBLook application
	1.4. A sample image processing function
	1.4.1. The macro definition: BEGIN_PROCESSING()
	1.4.2. The macro definition: END_PROCESSING("Operation name");
	1.4.3. Accessing the LUT
	1.4.4. Accessing the image pixels from the bitmap data for an indexed image (with LUT)
	1.4.5. Accessing the image pixels from the bitmap data for an RGB image

	1.5. Practical work
	References

